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SPIN MODELS,

ASSOCIATION SCHEMES AND

∆−Y TRANSFORMATIONS

Isidoro Gitler 1 and Isáıas López 2

Abstract

In this paper we extended a result given by Francois Jaeger to
compute the partition function of a spin model defined on pla-
nar graphs (see [10]) to the computation on classes of non-planar
graphs. Moreover, we present some results about the classification
of spin models in terms of association schemes.
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1 Introduction

In the world of knot and link invariants, we are interested in spin
models and their classification in term of association schemes. In [13]
V. Jones introduced a construction of a link invariant based on the
statistical mechanical concept of spin model. Jones studied only the
symmetric case; Kawagoe, Munemasa and Watatani[22] generalized it
by removing the symmetry condition.

A spin model is defined on a directed graph G by assigning to each
edge e a square matrix w(e) (with complex entries) whose rows and
columns are indexed by a given finite set X. Let c : V (G) → X be an
arbitrary coloring of the vertices of G with elements of X. Then with
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each edge e from v to v′ is associated the (c(v), c(v′)) entry of w(e).
The product over all edges of these numbers is called the weight of the
coloring c, and the sum of weights over all possible colorings is called
the partition function.

The main idea of Jones is to represent every link by a plane graph
with signed edges. Jones defines on this signed graph a spin model
for which the matrix associated with any edge is choosen according
to signs among two matrices. Then he gives a set of equations which,
when satisfied by the two matrices, guarantee that the partition function
(after an adequate normalization) is a link invariant.

F. Jaeger studied the relationship of spin models and association
schemes (Bose-Mesner algebras) in paper [9]. Those results where the
first that showed this relation. association schemes, a structure from Al-
gebraic Combinatorics, are important in several areas of Combinatorics,
for example, distance-regular graphs, codes, design theory, etc.

The question about the relationship between spin models and as-
sociation schemes was finally settled by K. Nomura [19], for the sym-
metric case: he gave a simple algebraic relation. The second invariance
equation on a spin model generates a BM-algebra (N(W )) and the third
invariance equation tells us that the weight matrix of the spin model be-
longs to the BM-algebra of Nomura. The non-symmetric case is treated
by Jaeger, Matsumoto, and Nomura in [12]. In particular every non-
symmetric spin model generates a dual pair of BM-algebras. We are
interested in knowing when there exists a spin model for a dual pair
of BM-algebras. Afterwards F. Jaeger, by using a topological point of
view, showed another relation between spin models and Bose-Mesner
algebras [11]. Jaeger defines the partition function Z of a spin model on
a plane tangle diagram. Z converts the vertical and horizontal products
of tangles into the ordinary and Hadamard products of matrices, and
the rotation through angle π

2 into a duality map.

On the other hand, in [10] Jaeger computed the partition function
by using only local transformations on graphs. For this one assumes
that all matrices assigned to the edges of a graph belong to a given BM-
algebra. This is always possible by using the BM-algebra of Nomura. If
a graph contains loops, pendant edges, edges in series or in parallel, one
can easily compute the partition function on a reduced graph for which
the assignment of matrices to edges has been modified in an appropriate
way consistent with the reductions. In particular if a graph is series-
parallel, the partition function can be computed by an iterative process.
Moreover, Jaeger extended the concept of series-parallel evaluation to
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all plane graphs by considering also the ∆−Y transformations. The
evaluation process relies on Epifanov’s Theorem on ∆-Y reducibility
of planar graphs and the fact that all matrices assigned to the edges
belong to a BM-algebra (exactly triple regular). Moreover, we give a
simple extension to important classes of nonplanar graphs.

2 BM-Algebras

In this work we let X = {1, . . . , n} and µ(X) will denote the set of
square matrices of order n with complex entries. For any A,B in µ(X),
AB denotes the usual product of matrices, I is the identity matrix of
the usual product, A ◦B denotes the Hadamard product of matrices, J
is the identity matrix with the Hadamard product, and AT the traspose
of A. A d-class association scheme on X is a finite family of {0,1}-
matrices of order n, {Ai|i = 0, . . . , d} such that the following properties
hold:

B0) Ai ◦Aj = δijAi

B1)
∑d
i=0Ai = J

B2) A0 = I

B3) For each i ∈ {0, . . . , d} there exists σ(i) ∈ {0, . . . , d} such that
ATi = Aσ(i)

B4) AiAj = AjAi =
∑d
k=0 p

k
ijAk.

The numbers pkij are called the intersection parameters and they must

satisfy pkij = pkji. The numbers ni = p0iσ(i), for i = 0, . . . , d are usually
called the valencies of the association scheme.

From (B1) we see that the matrices Ai are linearly independent
and by (B2)-(B4) we see that they generate a commutative (d +1)-
dimensional algebra A. This algebra is called the Bose-Mesner algebra
of the association scheme (BM-algebra).

The matrices A0, A1, . . . , Ad are called the canonical basis of the
BM-algebra. Since the matrices Ai commute, they can be diagonalized
simultaneously, that is, there exists a unitary matrix U such that for
each A ∈ A, U∗AU is a diagonal matrix.
We have Cn = V0

⊕
V1
⊕
· · ·
⊕
Vd where each Vi is a common eigenspace
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of A0, A1, . . . , Ad. Let Ei be the orthogonal projection Cn → Vi ex-
pressed in matrix form with respect to the canonical basis. Then these
matrices satisfy:

A0) EiEj = δijEi

A1)
∑d
i=0Ei = I

A2) E0 = 1
nJ

A3) For each i ∈ {0, . . . , d} there exists σ(i) ∈ {0, . . . , d} such that
ETi = Ēi = Eσ(i)

A4) Ei ◦ Ej = 1
n

∑d
k=0 q

k
ijEk.

The numbers qkij are called the Krein parameters and the integer num-
bers mi = dimVi = rank Ei are called the multiplicities of the associa-
tion scheme.
The matrices E0, E1, . . . , Ed are a basis of orthogonal idempotents for
the BM-algebra A.
Let P and 1

nQ be the matrices relating our two bases for A, then:

Aj =
d∑
i=0

Pj(i)Ei

Ej =
1

n

d∑
i=0

Qj(i)Ai

P and Q are called the first eigenmatrix and the second eigenmatrix
respectively. It is easy to see that

AiEj = Pi(j)Ej

and

Ai ◦ Ej =
1

n
Qj(i)Ai

The first equation tells us that each column vector of Ej is an eigenvec-
tor of Ai with eigenvalue Pi(j), and the second equation tells us that
Ej is constant in each entry where Ai is different from zero, moreover,
we can consider informally that each column vector of Ai is an “eigen-
vector” of Ej with the Hadamard product and 1

nQj(i) is the respective
“eigenvalue”.

Now we introduce several notions of isomorphisms for BM-algebras.
Let A,B be two BM-algebras and ψ : A→ B a linear isomorphism.
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Definition 2.1 ψ is a BM-isomorphism if and only if ψ(AB) = ψ(A)ψ(B)
and ψ(A ◦B) = ψ(A) ◦ ψ(B), for all A,B ∈ A.

A classical example is ψ(A) = P−1AP , where P is a permutation ma-
trix, but not all BM-isomorphism can be obtained in this form. In fact
this type of BM-isomorphism is called a combinatorial isomorphism.
There exist examples of BM-isomorphisms that are not combinatorial
isomorphisms.

Definition 2.2 ψ is a duality if and only if ψ(AB) = ψ(A)◦ψ(B) and
ψ(A ◦B) = 1

nψ(A)ψ(B), for all A,B ∈ A.

Remark 2.3 It is easy to prove that 1
nψ
−1 is a duality from B to A.

Usually we call (A,B) a dual pair of BM-algebras if there exists a duality
from A to B.

2.1 Some results on dual pairs of BM-algebras

In this part we present some properties that every dual pair of BM-
algebras must have. We let • denote the composition map.

Lemma 2.4 The next statements always hold.

i) The composition between a duality and a BM-isomorphism is a du-
ality,

ii) The composition between two dualities (under certain normaliza-
tion) is a BM-isomorphism.

Proof: Part (i) is clear. For (ii) take (A,B) and (B,D) two dual pairs
of BM-algebras with dualities ψ1 and ψ2 respectively. It is easy to check
that 1

nψ2 • ψ1 is a BM-isomorphism from A to D.

Proposition 2.5 Up to composition with a BM-isomorphism, duality
between BM-algebras is unique.

Proof: The next diagram is commutative.

A

ψ2 ��
??

??
??

??
ψ1
// B
ψ
��

B

Where ψ = ψ2 • ψ−11 and by lemma 2.4[ii], ψ is a BM-isomorphism.
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Proposition 2.6 Let (A,B) be a dual pair of BM-algebras with duality
ψ. Then the following statements are true.

i) The intersection numbers of A are equal to the Krein parameters
of B and viceversa.

ii) The first eigenmatrix of A (under certain rearrangement) is equal
to the second eigenmatrix of B and viceversa.

iii) Any duality commutes with the trasposition map.

Proof: For any matrix M , tr(M) will denote the trace of M and
sum(M) will denote the sum of all entries of M .
Let {A0, A1, . . . , Ad} be the canonical basis for A. It is easy to prove that
{ψ(A0), ψ(A1), . . . , ψ(Ad)} is the basis of orthogonal idempotents for B
and by the definition of duality we have (i). Similarly, if {E0, E1, . . . , Ed}
is the basis of orthogonal idempotents for B it is easy to check that
{ψ(E0), ψ(E1), . . . , ψ(Ed)} is the canonical basis of B. Now by the rela-
tion ψ(AiEj) = ψ(Pi(j)Ej) = Pi(j)ψ(Ej) = ψ(Ai) ◦ψ(Ej) we have (ii).
To prove (iii) recall that the multiplicities of the association scheme
satisfy q0ij = miδiσ(j) and sum(Ei) = nδi,0 (see [2],[3]), in fact q0ij 6= 0

if and only if σ(i) = j. Since tr(Ei ◦ Ej) = sum(EiE
T
j ) and sup-

pose that ψ(Ai)
T = ET (i) we have, nq0iT (i) = sum(ψ(Ai) ◦ ψ(Ai)

T ) =

tr(ψ(Ai)ψ(Ai)) = tr(ψ(Ai)) = tr(Eψ(i)) = mψ(i) 6= 0.

The splitting field K of an association scheme is

Q(Pi(j)(0 ≤ i, j ≤ d)) = Q(Qi(j)(0 ≤ i, j ≤ d)).

Where Q denotes the set of rational numbers.

Theorem 2.7 [21] If the Krein parameters are all rational, then the
splitting field K is contained in a cyclotomic number field.

Corollary 2.8 The eigenvalues of a dual pair belong to a cyclotomic
field. In fact they are in its integer ring.

Proof: Since the Krein parameters are integers, by proposition 2.6[i],
we can apply the above theorem.

Let ψ : A→ A be a duality, we shall say that ψ is a strong duality
if ψ2 = nτA where τA is the trasposition map on A. And in this case
we shall say that A is a self-dual BM-algebra.
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3 Spin models

Let W be a square matrix with non-zero complex entries, we intro-
duce W (the floor matrix of W ) defined by W (i, j) = 1

W (i,j) .

A spin model is a pair S = (X,W ) where W is a n × n matrix with
non-zero complex entries, such that:

(I) W ◦ I = aI, JW = WJ = Da−1J, JW = WJ = DaJ

(II) WW T = nI

(III) For every i, j, k ∈ X,∑
x∈XW (x, i)W (x, j)W (x, k) =

√
nW (i, j)W (k, j)W (i, k)

In [13] Jones used the concept of spin models to construct invariants
of links and knots, but he treats only the symmetric case. Kawagoe,
Munemasa and Watatani established the general case in [22]. The main
idea is to represent any connected diagram ~L of an oriented link as a
signed planar graph G(~L) as follows. Color the regions in black and
white so that the infinite region is colored with white and adjacent re-
gions receive different colors. Then G(~L) has one vertex in each black
region and one edge for each crossing. Each crossing has a sign + or −
which is defined by the next figure. If e ∈ E(G(~L)), we denote the sign
of e by s(e), the initial vertex of e by i(e), and the terminal vertex by
t(e). If (X,W ) is a Spin Model, the partition function is defined by

Z(~L) =
∑
σ

Πews(e)(σ(i(e)), σ(t(e)))

Where

ws(e)(i, j) =

{
W (i, j) if s(e) = +

W T (i, j) if s(e) = −

The product is taken over all edges and the sum is taken over all map-
pings σ from the set of vertices to X.
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Finally, the following result can be found in [22], for the symmetric
case see [13].

Proposition 3.1 For a complex number a and ~L a link diagram, the
number

Z(~L) = a−T (
~L)n−

|V (G(~L))|
2 Z(V (G(~L)), ws)

is a link invariant.

Where T (~L) is the Tait number of the link diagram.

When the matrix is symmetric, Z(G(~L), ws) does not depend on the
orientation of G(~L). In this case we have the definition of spin models
given in [13], and we shall call this model a symmetric spin model.

We shall say that a square matrix W with non-zero complex entries
is a type II matrix if it satifies one of the following conditions, each of
which is equivalent to condition (II) above.

i)
∑n
i=1

W (j,i)
W (k,i) = nδ(j, k) ∀j, k ∈ X.

ii)
∑n
i=1

W (i,j)
W (i,k) = nδ(j, k) ∀j, k ∈ X.

In [19] Nomura introduced a BM-algebra for a spin model, the construc-
tion of this algebra required only the second invariance equations and
he treated only the symmetric case. Jaeger, Matsumoto and Nomura in
[12] generalized this result. We present part of this work.

Let W a type II matrix, we introduce for each (i, j) ∈ X × X two
column n-dimensional vectors Yij and Y

′
ij where the k-entry is equal to:

a) Yij(k) = W (k,i)
W (k,j)
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b) Y ′ij(k) = W (i,k)
W (j,k)

Moreover, the star-triangle equation can be written as

(ST ) WYij =

√
n

W (j, i)
Yij

Let

N(W ) = {A ∈Mn×n(C)|Yij is an eigenvector of A ∀i, j}

and
N ′(W ) = {A ∈Mn×n(C)|Y ′ij is an eigenvector of A ∀i, j}

Theorem 3.2 [12]

(N(W ), N ′(W )) is a dual pair of BM-algebras. If W is a symmetric
matrix, we have N(W ) = N ′(W ) and N(W ) is a self-dual BM-algebra.

The star-triangle equation (ST) tell us that W ∈ N(W ).

Proposition 3.3 [12] The following properties are equivalent:

(i) W ∈ N(W )

(ii) W satisfies the star-triangle equation for some D ∈ C∗

Inverse Problem: We are interested in the inverse problem;
suppose we have a dual pair of BM-algebras (A,B) when is it the case
that there exists a type II matrix W such that N(W ) = A and N ′(W ) =
B .

3.1 Some results about the inverse problem and exam-
ples

Let H be a cyclic group of order m generated by g.
The group association scheme on X = H is generated by the matrix A1,
for x, y ∈ H.

A1(x, y) =

{
1 if xy−1 = g
0 otherwise

This association scheme is usually denoted by X (H). The matrices of
the association scheme are Ai = Ai1, for i = 0, . . . , n − 1 Let X (H) =
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〈A0, A1, . . . , An−1〉 = 〈A1〉 be the BM-algebra of the group association
scheme.

The idempotents matrices E0, E1, . . . , En−1 of A are given by

Ai =
n−1∑
j=0

ζijEj

where ζ is a primitive n-th root of unity. The first eigenmatrix is P =
(ζij), 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1.

ψ : A→ A, ψ(Ai) = nEi

defines a strong duality, X (H) is a self-dual BM-algebra.
For any abelian group H of finite order, we have that H = H1 ×H2 ×
· · · ×Hm is a direct product of cyclic groups. Then X (H) = X (H1)⊗
X (H2)⊗· · ·⊗X (Hm) where ⊗ is the Kroenecker product of matrices. If
P1, P2, . . . , Pm are the first eigenmatrices of X (H1),X (H2), . . . ,X (Hm)
respectively, then P = P1 ⊗ P2 ⊗ · · · ⊗ Pm is the first eigenmatrix of
X (H).

Theorem 3.4 Let P the first eigenmatrix of the BM-algebra A. P is a
type II matrix if and only if A is the BM-algebra of some abelian group.
Moreover N(P ) = A.

Proof: Suppose P is a type II matrix, then from the orthogonal
relation (see [2] or [3]) of the first eigenmatrix we can see that ni = 1
for any i, hence all elements of the canonical basis are permutation
matrices and are closed under the usual product. The canonical basis
is an abelian group. The other implication it is very simple. For the
last part we can assume that H is a cyclic group, it is easy to see
that N(P ) = A. For the general case, if H is an abelian group then
H = H1 × H2 × · · · × Hm is a direct product of cyclic groups, P =
P1 ⊗ P2 ⊗ · · · ⊗ Pm, the first eigenmatrix of A, is a type II matrix and
N(P ) = N(P1)⊗N(P2)⊗ · · · ⊗N(Pm) = A.

In this part we present some examples of type II matrices and their
BM-algebras.

1. For the Hadamard matrix

W =


1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1


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we have that

N(W ) = 〈A0, A1, A2, A3〉

where

A0 = I A1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 A2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



A3 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


2. For w = exp(2πi5 ), let

W =


1 w w−1 w−1 w
w 1 w w−1 w−1

w−1 w 1 w w−1

w−1 w−1 w 1 w
w w−1 w−1 w 1


we have that

N(W ) = 〈A0, A1, A2, A3, A4〉

where

A0 = I A1 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

 A2 =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0



A3 =


0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 A4 =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


All examples above generate BM-algebras with valency one. But

this is not true in general as the following example shows.
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3. From Proposition 5 [4], let ε ∈ {1,−1} and a ∈ C∗

W =


a −εa−1 −a −εa−1

−εa−1 a −εa−1 −a
−a −εa−1 a −εa−1
−εa−1 −a −εa−1 a


Take a = exp(2πi5 ), we have

N(W ) = 〈A0, A1, A2〉

Where

A0 = I A1 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 A2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


n1 = 2.

The following examples ilustrate the inverse problem.

4. Let A = 〈A0, A1, A2, A3〉 and B = 〈B0, B1, B2, B3〉 where

A0 = I A1 =



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0


A2 =



0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0



A3 =



0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0



B0 = I B1 =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


B2 =



0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0


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B3 =



0 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0


(A,B) is a dual pair of BM-algebras, in fact both are sub-BM-
algebras of a BM-algebra generated by a cyclic group of order 6.
The duality is generated by the duality of this BM-algebra.
The type II matrix produced by the dual pair of BM-algebras is

W =



1 1 1 1 1 1
1 1 1 −1 −1 −1
1 ζ2 −ζ 1 ζ2 −ζ
1 ζ2 −ζ −1 −ζ2 ζ
1 −ζ ζ2 1 −ζ ζ2

1 −ζ ζ2 −1 ζ −ζ2


Where ζ satify that ζ6 = 1, ζ 6= 1 or −1.

Unfortunately it is not always true that for any dual pair of BM-
algebras there exist a type II matrix for the inverse problem as
the next example shows.

5. Let A = 〈A0, A1, A2〉 where

A0 = I A1 =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 A2 =


0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0


A is a self-dual BM-algebra, in fact this BM-algebra is the sym-
metrization of the BM-algebra generated by a cyclic group of order
5. From [20] the only type II matrices of order 5 are:
The cyclic model 

1 1 1 1 1
1 ζ ζ2 ζ3 ζ4

1 ζ2 ζ4 ζ ζ3

1 ζ3 ζ ζ4 ζ2

1 ζ4 ζ3 ζ2 ζ

 ,
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where ζ5 = 1, ζ 6= 1, and the Potts model
α 1 1 1 1
1 α 1 1 1
1 1 α 1 1
1 1 1 α 1
1 1 1 1 α

 ,

where α+ α−1 + 3 = 0.
The cyclic model generates a group BM-algebra of order 5 and the
Potts model produces the BM-algebra generated by {I, J − I}.

4 Spin models and ∆−Y transformations

4.1 Series-parallel reductions

In [10] F. Jaeger showed that the computation of the partition func-
tion can be performed by using series-parallel reductions of graphs, and
later extended this approach to all planar graphs by introducing the
star-triangle transformation (∆−Y transformation), and using a well
know theorem of Epifanov which states that all planar graphs are ∆−Y
reducible to a vertex. We present a generalization for not necessarily
planar graphs.

Let (X,W ) be a spin model, N(W ) = A and G a directed graph
with non empty edge-set and provided with an arbitrary ordering of its
edges. Let us represent every map w from E(G) to A by the vector

(w(e1), . . . , w(en)) ∈ Am

where m = |E(G)|.
The mapping w → Z(G, w) defines a m-multilinear form on Am

which we shall denote by ZG. Let us denote by AG the tensor product of
vector spaces

⊗
j=1,...,mAj , where Aj corresponds to the j-th edge of G

and is identified with A for j = 1, . . . ,m. We shall identify ZG with the
linear form on AG which takes the value Z(G, w) on w(e1)⊗· · ·⊗w(em)
for every mapping w from E(G) to A.

Let C(G, 1) (respectively: D(G, 1)) be the graph obtained from G
by contracting (deleting) the edge e1. Thus AC(G,1) and AD(G,1) are
obtained from AG by deleting the first factor. For every w in AC(G,1) '
AD(G,1) we have

ZG(I ⊗ w) = ZC(G,1)(w)
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ZG(J ⊗ w) = ZD(G,1)(w)

The rules for the computation of ZG are as follows. Let R(G, 1) be
the graph obtained from G by reversing the orientation of e1, then

ZG = ZR(G,1) • (τ ⊗ Id)

where • denotes the composition of maps and Id denotes the identity
map acting on the appropriate factors.
Let θ, θ∗ : A→ C two linear forms defined by

I ◦M = θ(M)I JM = MJ = θ∗(M)J

for every matrix M ∈ A.
Let µ, µ∗ : A⊗A→ A defined by

µ(M ⊗N) = MN µ∗(M ⊗N) = M ◦N

for every M,N ∈ A. Now we have that:

If G has no edges then ZG = n|V (G)|

If e1 is a loop then ZG = ZD(G,1) • (θ ⊗ Id)

If e1 is a pendant edge then ZG = ZC(G,1) • (θ∗ ⊗ Id)

If e1, e2 form a series pair then ZG = ZC(G,1) • (µ⊗ Id)

If e1, e2 form a parallel pair then ZG = ZD(G,1) • (µ∗ ⊗ Id)

A graph G is series-parallel (see [23]) if and only if it can be re-
duced to a graph with no edges by repetead applications of one of the
following types of transformations which we call extended series-parallel
reductions:

(i) Deletion of a loop.

(ii) Contraction of a pendant edge.

(iii) Contraction of one of the edges of a series pair.

(iv) Deletion of one of the edges of a parallel pair.

Note: A graph is series-parallel if an only if it has no K4 minor.

Proposition 4.1 [10] If G is a connected series-parallel graph. ZG is a
composition ρ0•ρ1 · · ·•ρk, where ρ0 is scalar multiplication by n and each
of ρ1, . . . , ρk corresponds to the action of one of the maps τ, θ, θ∗, µ, µ∗

on some factors of a tensor product of copies of A.
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4.2 Star and triangle projections in association
schemes

Let A be a BM-algebra on X and S be the complex vector space with
basis X. We shall provide S ⊗S ⊗S with a positive definite Hermitian
form 〈 , 〉 such that {α⊗β⊗γ|α, β, γ ∈ X} is an orthonormal basis. We
define the linear maps π (star projection) and π∗ (triangle projection)
from A⊗A⊗A to S ⊗ S ⊗ S by

π(A⊗B ⊗ C) =
∑

α,β,γ∈X

( ∑
x∈X

A(x, α)B(x, β)C(x, γ)
)
α⊗ β ⊗ γ (S)

π∗(A⊗B ⊗ C) =
∑

α,β,γ∈X
A(β, γ)B(γ, α)C(α, β)α⊗ β ⊗ γ (T )

Then W satisfies the star-triangle equation(ST) if and only if

π(W T ⊗W ⊗W T ) =
√
nπ∗(W T ⊗W ⊗W ).

Jaeger introduced the concept of feasible triple and dually feasible triple.
For i, j, k, u, v, w ∈ {0, . . . , d}

• (u, v, w) is a feasible triple if and only if p
σ(w)
uv 6= 0

• (i, j, k) is a dually feasible triple if and only if q
σ(k)
ij 6= 0

We shall denote by F(A) the set of feasible triples and F∗(A) the set
of dually feasible triples.
If (A,B) is a dual pair of BM-algebras we have that F(A) = F∗(B) and
F∗(A) = F(B) which follows from Proposition 2.6[i]. In particular, if
A is self-dual, F(A) = F∗(A).
Finally, from [10], for Yijk = π(EI ⊗ Ej ⊗ Ek) and ∆uvw = π∗(Au ⊗
Av⊗Aw), we have that {Yijk|(i, j, k) ∈ F∗(A)} is an orthogonal basis of
Im(π) and {∆uvw|(u, v, w) ∈ F(A)} is an orthogonal basis of Im(π∗).

We shall say that a BM-algebra A is triply regular if and only if there
exists a linear map k: A⊗A⊗A→ A⊗A⊗A such that the following
holds

π = π∗ • k.

Similarly, we shall say that a BM-algebra A is dually triply regular
if and only if there exists a linear map k∗ : A ⊗ A ⊗ A → A ⊗ A ⊗ A
such that the following holds

π∗ = π • k∗.
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We now define an exactly triply regular BM-algebra as a BM-algebra
which is both triply regular and dually triply regular.

The next propositions give a characterization of triply regular BM-
algebras. Given a BM-algebra A, we define two linear maps k, k∗ from
A⊗A⊗A to itself by

k(Ei ⊗ Ej ⊗ Ek) =
∑

(u,v,w)∈F(A

〈Yijk,∆uvw〉
〈∆uvw,∆uvw〉

Au ⊗Av ⊗Aw

k∗(Au ⊗Av ⊗Aw) =
∑

(i,j,k)∈F∗(A

〈∆uvw, Yijk〉
〈Yijk, Yijk〉

Ei ⊗ Ej ⊗ Ek

Im(f) denote the image of the function f .

Proposition 4.2 [10] The following properties are equivalent

(i) The BM-algebra A is triply regular

(ii) Im(π) ⊆ Im(π∗)

(iii) The linear map k satisfies π = π∗•k.

Proposition 4.3 [10] The following properties are equivalent

(i) The BM-algebra A is dually triply regular

(ii) Im(π∗) ⊆ Im(π)

(iii) The linear map k∗ satisfies π∗ = π • k∗.

Proposition 4.4 [10]

(i) The BM-algebra A is exactly triply regular if and only if Im(π) =
Im(π∗)

(ii) The triply regular BM-algebra A is exactly triply regular if and
only if |F(A)| = |F∗(A)|

(iii) Every self-dual triply regular BM-algebra is exactly triply regular.

In this context, we are interested in studying the following problem.

Let W a type II matrix. Under what conditions N(W ) is an exactly
triply regular BM-algebra.
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4.3 ∆−Y transformations

In [10] Jaeger extended the computation of the partition function to all
planar graphs by using ∆−Y transformations. Here we give a simple
extension to important clases of nonplanar graphs.

The ∆−Y transformation is a local transformation on graphs. If v
is a degree three vertex (a wye) adjacent to three vertices v1, v2 and
v3 by edges e1, e2 and e3 respectively, vertex v and edges e1, e2 and e3
can be deleted and replaced by edges e′1 = (v2, v3), e

′
2 = (v1, v3) and

e′3 = (v1, v3) (see figure). We shall say that G′ is obtained from G by
a Y−∆ transformation. If e′1 = (v2, v3), e

′
2 = (v1, v3) and e′3 = (v1, v3)

are edges of G′ (a delta or triangle), they can be deleted and replaced
by adding a new vertex v adjacent to v1, v2 and v3. We shall say that
G is obtained from G′ by a ∆−Y transformation. We shall say that
G is ∆−Y reducible when G can be reduced to the trivial graph with
one vertex by series-parallel reduction, ∆−Y transformations and Y−∆
transformations.
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•
v3
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A
A
A
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A
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e′2

�
�
�
�
�
�

e′3

e′1

G′

•
v3

•
v2

∆−Y Transformation

Theorem 4.5 (Epifanov’s Theorem) Every connected plane graph
is ∆−Y reducible.

We now considerer a (directed) plane graph G and the associated form
ZG.
Let us assume that G is obtained from G′ by a ∆−Y transformation.
Then[10]

ZG = ZG′ • (k⊗ Id)

where k acts on the first three factors of AG = AG′ .
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And

ZG′ = ZG • (k∗ ⊗ Id)

The next theorem gives a way to calculate the partition function on
planar graphs.

Proposition 4.6 [10] Let A be an exactly triply regular BM-algebra. If
G is a connected plane graph, the linear form ZG on AG is a composition
ρ0•ρ1 · · ·•ρk, where ρ0 is scalar multiplication by n and each of ρ1, . . . , ρk
corresponds to the action of one of the maps τ, θ, θ∗, µ, µ∗, k, k∗ on some
factors of a tensor product of copies of A.

Proposition 4.7 The graphs K3,3, K5 and V8 are ∆−Y reducible.
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Let G = (V,E) be a connected graph, and A ⊆ V be a minimal
articulation set, that is, the deletion of A produces a disconnected graph,
but no proper subset of A has this property. Choose subsets T1 and T2
of V , such that (T1, A, T2) is a partition of V , and no edge joins a
vertex in T1 to a vertex in T2. Add a set F of new edges joining each
pair of noadjacent vertices in A. Let G1 = (V1, E1) and G2 = (V2, E2)
be subgraphs so that Vi = Ti ∪ A (i = 1, 2), E1 ∪ E2 = E ∪ F and
G1∩G2 = (A,E1∩E2) is a complete graph. Then if |A| = k (1 ≤ k ≤ 3),
G is called a k-sum of G1 and G2 (see [6]).

A variation on ∆−Y reducibility is to forbid reduction on some
distinguished vertices. Specifically, let T ⊂ V (G) be a set of terminals.
A terminal cannot be deleted in a degree-one or series reduction, nor
can it be deleted in a Y−∆ transformation. If a graph with terminals
can be reduced to eliminate all non-terminal vertices, then we say it is
(Terminal) ∆−Y reducible (For more details see [5], [6], [8]).

Theorem 4.8 [6] Every 2-connected plane graph with two terminals is
∆−Y reducible to a single edge.

Theorem 4.9 (Wagner’s Theorem I) [6] Every connected graph with-
out K5 minors can be obtained by means of k-sums (k=1,2,3) starting
from planar graphs and copies of V8.

Theorem 4.10 (Wagner’s Theorem II) [6] Every connected graph
without K3,3 minors can be obtained by means of k-sums (k =1,2,3)
starting from planar graphs and copies of K5.
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Theorem 4.11 (Gitler’s Theorem) [5] A 2-connected plane graph
with three terminals is ∆−Y reducible to a ∆ (or Y) where the ver-
tices are the original three terminals.

Theorem 4.12 [5] A graph with no K5 minor is ∆−Y reducible.

Proof: The proof is by an inductive procedure. If the present graph
is planar apply Epifanov’s theorem. If the graph is V8 then it is reducible
by proposition 4.7. Otherwise G is k−sum of G1 and G2, where G2 is a
planar graph or V8. We have several cases depending on k.
If k = 3, when G2 is a planar graph. Consider the vertices of A as
terminals of G2 and apply Theorem 4.11.
If k = 2, we have two cases depending on whether G2 is planar or
V8. When G2 is a planar graph then by theorem 4.8 applied when
considering the vertices of A as terminals in the conclusion. Otherwise
G2 is V8 and the result follows by proposition 4.7.
If k = 1, the conclusion follows by proposition 4.7 when G2 is V8 and
by theorem 4.5, if G2 is a planar graph.
We have covered all cases, thus obtaining the result.

Theorem 4.13 [5] A graph with no K3,3 minor is ∆−Y reducible.

Proof: By proposition 4.8 we have that K5 is reducible and terminal
reducible for the cases of one and two terminals. Theorem 4.8 covers the
reducibility of the planar two terminal case. By an inductive argument
similar to the proof of theorem 4.12 (when k = 1 and 2), the result
follows.

We have a generalization of proposition 4.6.

Proposition 4.14 Let A be an exactly triply regular BM-algebra. If
G is a connected graph without K5 minors or without K3,3 minors, the
linear form ZG on AG is a composition ρ0•ρ1•· · ·•ρk, where ρ0 is scalar
multiplication by n and each of ρ1, . . . , ρk corresponds to the action of
one of the maps τ, θ, θ∗, µ, µ∗, k, k∗ on some factors of a tensor product
of copies of A.
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Proof: First, we show a reduction of V8.

• • • •

• • • •
e1 e2 e3 e4
e5 e6 e7

e8 e9 e10

e11 e12

V8

�
�
�@

@
@

•

• • •

• • •

@
@
@�

�
�

�
�
�

•

•

• •

• •

�
�
�@

@
@�
�
�

•

• •

• •

�
�
�

• •

•

• •

• • •

•• ••

• •

•

•

• •

• • Q
Q
Q
QQ�

�
�
��

•

• •

• •



SPIN MODELS 53

�
�
� @

@
@•

••

•

• • Q
Q
Q
QQ

•

• •

• •

@
@
@

•

•

•

• ••

•

•

•

•

�
�
�
�
�
�

A
A
A
A
A
A

•

•

• �
�
�
�
�
�

A
A
A
A
A
A

•

•

•

@
@
@

�
�
�

•

•

• •

•

Thus

Z(V8) = nθ∗ • k • µ∗ • k • µ • k • µ • k • k∗ • µ • k • µ∗ • k∗.

Similarly we have:

Z(K33) = nθ∗ • θ • k∗,

and

Z(K5) = nθ∗ • k • µ∗ • k • µ • k • µ • k.
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Where the maps act on the appropriate factors.

If G is a graph with no K5 minor it is the k-sum (k = 1, 2, 3) starting
from planar graphs and copies of V8. We apply theorem 4.6 for each
component, similarly if G is a graph with no K3,3 minor.
In general, we have:

Theorem 4.15 Let A be an exactly triply regular BM-algebra. If G
is a ∆−Y reducible connected graph, the linear form ZG on AG is a
composition ρ0 • ρ1 • · · · • ρk, where ρ0 is scalar multiplication by n
and each of ρ1, . . . , ρk corresponds to the action of one of the maps
τ, θ, θ∗, µ, µ∗, k, k∗ on some factors of a tensor product of copies of A.
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Centro de Investigación y Estudios
Avanzados,
P.O. Box 14-740,
igitler@math.cinvestav.mx
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