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SAMPLE PATH AVERAGE COST

OPTIMALITY FOR A CLASS OF

PRODUCTION-INVENTORY

SYSTEMS ∗

OSCAR VEGA-AMAYA 1

Abstract

We show the existence of sample-path average cost (SPAC-) opti-
mal policies for a class of production-inventory systems with un-
countable state space and strictly unbounded one-step cost— that
is, costs that growth without bound outside of compact subsets.
In fact, for a specific case, we show that a K∗-threshold policy
is both expected and sample path average cost optimal, where the
constant K∗ can be easily computed solving a static optimization
problem, which, in turn, is obtained directly form the basic data
of the production-inventory system.
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1 Introduction

We consider an inventory system with a single product, infinite storage
and production capacities, for which the excess demand is not back-
logged. Denote by xt and at the inventory level and the amount of
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product ordered (and immediately supplied) at the beginning of each
decision period t = 0, 1, · · · , respectively. The product demand during
period t is denoted by wt, which is assumed to be a nonnegative random
variable. The inventory level evolves in X = [0,+∞) according to

xt+1 = max(xt + at − wt, 0), t = 1, 2, · · · ; x0 = x ∈ X, (1)

and the performance of the system under an admissible control policy
δ = {at} ⊂ A, given an initial state x0 = x ∈ X, is evaluated by means
of the sample-path average cost (SPAC)

J0(δ, x) := lim sup
n→∞

1

n

n−1∑
t=0

C(xt, at), (2)

where C is a lower semicontinuous and strictly unbounded function on
K := X×A; that is, it satisfies

lim
n→∞

inf{C(x, a) : (x, a) /∈ Kn} =∞, (3)

with {Kn} being a sequence of compact subsets which converges in-
creasingly to K.

Thus, the optimal control problem we are concerned with is that of
selecting a control policy δ∗ = {a∗t } that “minimizes” (2), that is,

J0(δ∗, x) ≤ J0(δ, x) almost surely, (4)

for all admissible control policy δ = {at} and initial state x0 = x ∈ X.
If such a policy δ∗ = {a∗t } exists, it is called sample-path average cost
(SPAC) optimal.

We discuss the existence of SPAC optimal policies for several choices
of one-step cost function satisfying (3) and, for a specific case, we prove
that a K∗-threshold policy is both expected and sample path average cost
optimal, where the constant K∗ can be easily computed solving a static
optimization problem, which, in turn, is obtained directly from the basic
data of the production-inventory system [see Example A; Theorem 4.6
and Remark 4.5]. In order to prove these facts, in Section 3, we first
discuss several results for general Markov control processes (MCPs) from
[19]; then, in Section 4, we specialize these results to the inventory
systems (1).
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As it is well-known, the Markov Control Processes (MCPs) the-
ory provides a very suitable framework for the control of production-
inventory systems (and many other important dynamic optimization
problems), but—to the best of our knowledge— the available results
for MCPs do not include the production-inventory systems in which we
are interested, since, to begin, most of the literature deals with the ex-
pected average cost (EAC) problem when the state space is denumerable
or uncountable but assuming that the one-step cost is bounded, under
strong recurrence/ergodicity assumptions (see [1], [9] and the references
therein). On the other hand, the analysis of the sample-path average
cost (SPAC) is seldom developed, and when it is done, it is also re-
stricted to the denumerable state space or bounded one-step costs cases
([1], [3], [4], [14]).

Perhaps the only exceptions to this situation are the recent works by
Hernández-Lerma et. al. [11], Lasserre [12] and Vega-Amaya [19] whose
settings and approaches are not comparable at all. For example, in
[11] it is used a V-uniform ergodicity assumptions to show the existence
of a stationary policy SPAC-optimal (in the class of all policies) with
minimum “variance” in the class of SPAC-optimal stationary polices,
whereas [12] and [19] consider weaker recurrence conditions and suppose
that the one-step cost is strictly unbounded, but equally, their results
are weaker. Roughly speaking, in the former paper, it is shown that to
find a SPAC-optimal policy is equivalent to solving a certain infinite-
dimensional linear program, and in the latter work it is only guaranteed
the existence of a relaxed (or randomized) stationary SPAC-optimal
policy. However, from our point of view, the context provided in [19] is
more suitable to solving the SPAC control problem for the system (1)
with one-step costs satisfying (3), since it provides a direct approach
and does not require strong ergodicity assumptions.

The remainder of the paper is organized as follow. Section 2 contains
a brief description of the Markov control model of interest and assump-
tions. In Section 3 we introduce the optimality criteria and several
results from Vega-Amaya [19] are stated without proof [see Theorems
3.6, 3.7 and 3.8]. Finally, in Section 4, we discuss several examples from
inventory theory.

We shall use the following notation. Given a Borel space Y ( i.e.,
a Borel subset of some separable complete metric space), B(Y ) denotes
its Borel σ−algebra and “measurable” will mean “Borel-measurable”.
P(Y ) stands for the class of all probability measures on Y. Moreover, if



72 OSCAR VEGA-AMAYA

Y and Z are Borel spaces, then a stochastic kernel on Y given Z is a
function P (·|·) such that P (·|z) is a probability measure on Y, for each
z ∈ Z, and P (B|·) is measurable function for each B ∈ B(Y ). The family
of all stochastic kernels on Y given Z is denoted by P(Y |Z). Finally, we
denote by N (resp., N0) the set of positive integers (resp., nonnegative
integers).

2 The Markov model

Since the Markov control model (X,A, {A(x) : x ∈ A(x)}, Q,C) we are
concerned with is quite standard, we only give a brief description. For
details see, for instance, [9].

We assume that the state space X and the control space A are both
Borel spaces. For each x ∈ X, A(x) is a nonempty Borel subset of A
and, moreover, K:= {(x, a) : a ∈ A(x), x ∈ X} is a Borel subset of the
Cartesian product X ×A. Finally, the transition law Q is a stochastic
kernel on X given K and the one step cost function C is a measurable
function on K.

Define

H0 := X and Ht := Kt ×X for t ∈ N.

An (admissible) control policy is a sequence δ = {δt} such that,
for each t ∈ N0, · · · , δt ∈ P(A|Ht) and it satisfies the constraint
δt(A(xt)|ht) = 1 ∀ht = (x0, a0, · · · , xt−1, at, xt) ∈ Ht. A control pol-
icy δ = {δt} is said to be: (i) relaxed (or randomized stationary) policy
if there exists ϕ ∈ P(A|X) such that, for each t, δt(·|ht) = ϕ(·|xt) ∀ht ∈
Ht; (ii) (deterministic) stationary policy if there exists a measurable
function f : X 7→ A such that, f(x) ∈ A(x) ∀x ∈ X, and δt(·|ht) is
concentrated at f(xt) ∀ht ∈ Ht and t ∈ N0.

The class of all control policies is denoted by ∆, while Φ and F
stand for the subclasses formed by the relaxed and stationary policies,
respectively.

For each policy δ ∈ ∆ and initial distribution ν ∈ P(X), there exist
a stochastic process {(xt, at) : t = 0, 1, · · ·} and a probability measure
P δν —which governs the evolution of the process— both defined on the
sample space (Ω,F), where Ω := (X×A)∞ and F is the corresponding
product σ-algebra. The expectation operator with respect to P δν is
denoted by Eδν . We will refer to xt and at as the state and control at
time t, respectively. If the initial probability measure ν is concentrated
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at an initial state x0 = x ∈ X, we write P δx and Eδx instead of P δν and
Eδν , respectively.

When using a relaxed policy ϕ ∈ Φ, the state process {xt} is a
Markov chain on X with time-homogeneous transition kernel

Q(·|x, ϕ) :=

∫
X
Q(·|x, a)ϕ(d a|x), x ∈ X. (5)

We also write

C(x, ϕ) :=

∫
X
C(x, a)ϕ(d a|x). (6)

For a deterministic stationary policy f ∈ F, (5)-(6) become

Q(·|x, f) := Q(·|x, f(x)) and C(x, f) := C(x, f(x)). (7)

We also suppose that the Markov control model satisfies the follow-
ing properties:

Assumption 2.1.(a) C is nonnegative and lower semicontinuous on
K;

(b) C is strictly unbounded on K, i.e., there exists an increasing se-
quence of compact sets Kn ↑ K such that

lim
n→∞

inf{C(x, a) : (x, a) /∈ Kn} =∞;

(c) Q(·|x, a) is weakly continuous in (x, a) ∈ K, that is,
∫
X u(y)Q(dy|x, a)

is continuous in (x, a) ∈ K for every bounded continuous function u on
X.

The property in Assumption 2.1(b) is also referred to saying that C
is a moment or that C is a norm-like function on K. Its main appealing
stems from that it provides an easy way to prove tightness of measures,
which has been exploited in several contexts . See, for instance, [5], [7],
[8], [10], [15], [16], and references therein.

3 Sample path and expected average cost

Our main interest is to evaluate the stochastic control system when a
policy δ ∈ ∆ is used, given an initial distribution ν ∈ P(X), by means
of the sample path average cost (SPAC) defined as
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J0(δ, ν) := lim sup
n→∞

1

n

n−1∑
t=0

C(xt, at), (8)

but, we also consider the expected average cost (EAC) given by

J(δ, ν) := lim sup
n→∞

1

n
Eδν

n−1∑
t=0

C(xt, at). (9)

Moreover, we define the optimal (minimum) expected average cost as

j∗ := inf
ν

inf
δ
J(δ, ν) (10)

To avoid a trivial problem we shall use the following assumption.

Assumption 3.1. There exists a policy δ∗ and initial distribution ν∗
such that J(δ∗, ν∗) is finite.

The optimality criteria we are concerned with are the following.

Definition 3.2. Let δ∗ be a policy and ν∗ an initial distribution.

(a) δ∗ is said to be expected average cost (EAC-)optimal if

J(δ, x) ≥ J(δ∗, x) ∀x ∈ X, δ ∈ ∆;

(b) δ∗ is said to be strong expected average cost (strong EAC-) optimal
if

lim inf
n→∞

1

n
Eδx

n−1∑
t=0

C(xt, at) ≥ J(δ∗, x) ∀x ∈ X, δ ∈ ∆;

(c) (δ∗, ν∗) is said to be a minimum pair if J(δ∗, ν∗) = j∗;

(d) δ∗ is said to be sample path average cost (SPAC-) optimal if for
every δ ∈ ∆ and ν ∈ P(X) :

J0(δ, ν) ≥ j∗ P δν − almost surely (11)

and, moreover,

J0(δ∗, ν) = j∗ P δ
∗

ν − almost surely, (12)

We now introduce some notation and several classes of polices

Definition 3.3. A relaxed policy ϕ, or theMarkov chain induced by it,
is said to be irreducible if there exists a non-trivial σ-finite measure λ
on X, such that λ(B) > 0 implies that
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Eϕx

∞∑
t=1

IB(xt) > 0

where IB(·) denotes the indicator function of the subset B.

If the policy ϕ is irreducible, from [17, Proposition 4.2.2], there
exists a maximal irreducibility measure ψ, which means that any other
irredubility measure ψ′ is absolutely continuous with respect to ψ, i.e.,
ψ′ ≺ ψ. Thus, the class of subsets of “positive measure”

Bϕ+(X) := {B ∈ B(X) : ψ(B) > 0}

is uniquely defined.

Definition 3.4. A relaxed policy ϕ ∈ Φ is said to be:

(a) stable if there exists an invariant probability measure µϕ ∈ P(X)
for the transition law Q(·|x, ϕ), i.e.,

µϕ(·) =

∫
X
Q(·|y, ϕ)µϕ(dy),

which satisfies

J(ϕ, µϕ) =

∫
X
C(y, ϕ)µϕ(dy) <∞;

(b) recurrent if it is irreducible and

Eϕx

∞∑
t=1

IB(xt) =∞ ∀x ∈ X, B ∈ Bϕ+(X);

(c) Harris recurrent if it is irreducible and

Pϕx

[ ∞∑
t=1

IB(xt) =∞
]

= 1 ∀x ∈ X, B ∈ Bϕ+(X).

We denote by ΦS the class of relaxed stable policies and by ΦR

(ΦHR, resp.) the class of relaxed policies which are recurrent (Harris
recurrent, resp.).

Remark 3.5. Let ϕ be a policy with invariant probabiltiy measure µϕ.
If it is also irreducible, then:
(a) ϕ is recurrent [17, Proposition 10.1.1.];
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(b) Then, from [17, Propositions 9.1.5 and 4.2.3.], there exist subsets
Hϕ and Nϕ such that:

(i) X = Hϕ ∪Nϕ;
(ii) Hϕ is absorbing and full, i.e., Q(Hϕ|x, ϕ) = 1 ∀x ∈ Hϕ and

µϕ(Hϕ) = 1;
(iii) the policy ϕ restricted to Hϕ is Harris recurrent, i.e.,

Pϕx

[ ∞∑
t=1

IB(xt) =∞
]

= 1 ∀x ∈ Hϕ,

for each B ∈ B+(X) contained in Hϕ;
(c) Thus, ϕ is Harris recurrent if and only if Nϕ = ∅.

We suppose throughout the following that Assumptions 2.1 and 3.1
hold.

We now state one of the main results. The proof of this and the
other results in this section are given in [19].

Theorem 3.6. For each policy δ ∈ ∆ and measure ν ∈ P(X),

lim inf
n→∞

1

n

n−1∑
t=0

C(xt, at) ≥ j∗ P δν − almost surely. (13)

The next theorem contains some interesting relations among the
concepts of minimum pair, sample path and expected average costs,
which are direct consequences of Theorem 3.6. The result in Theorem
3.7(c) was previously proved in [7].

Theorem 3.7.(a) A policy δ∗ ∈ ∆ is EAC-optimal if and only if it is
strong EAC-optimal;

(b) If (δ, ν) is a minimum pair, with δ ∈ ∆ and ν ∈ P(X), then

lim inf
n→∞

1

n

n−1∑
t=0

C(xt, at) = j∗ P δν − almost surely.

(c) Let ϕ ∈ ΦS and µϕ an associated invariant probability measure.
Then, (ϕ, µϕ) is a minimum pair if and only if J(ϕ, x) = j∗ for (µϕ-)
almost all x ∈ X.

The first part of the next theorem states the existence of a minimum
pair (ϕ∗, µ∗) with ϕ∗ being a stable policy and µ∗ an associated invariant
probability measure. This results was already proved in [7], but the
approach used in that paper differs from the used in the present one in
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that his analysis relies on the well behavior of the expected average cost
whereas our analysis is on the discounted cost. Roughly speaking, our
proof of the existence of a minimum pair yields, at the same time, that
the optimal average cost may be approximated by discounted programs,
which exhibits other nice property of the control problem with strictly
unbounded cost. The second part of the theorem states that if the
policy ϕ∗ is positive Harris recurrent then it is SPAC-optimal. To state
precisely these facts, we introduce the following notation.

For each α ∈ (0, 1), the (expected) α-discounted cost when it is used
a policy δ ∈ ∆, given the initial distribution measure ν ∈ P(X), is
defined by

Vα(δ, ν) := Eδν

∞∑
t=0

αtC(xt, at), (14)

and the α-discounted optimal value is given by

mα := inf
ν

inf
δ
Vα(δ, ν). (15)

Theorem 3.8.(a) There exists a stable policy ϕ∗ ∈ ΦS [with invariant
probability measure µ∗] such that (ϕ∗, µ∗) is a minimum pair. Hence,
from Theorem 3.7(c) and Remark 3.5(b), for µ∗-almost all x ∈ X :

J(ϕ∗, x) = j∗, (16)

and

J0(ϕ∗, x) = lim
n→∞

1

n

n−1∑
t=0

C(xt, at) = j∗ Pϕ
∗

x − almost surely.

Moreover,

j∗ = lim
α→1−

(1− α)mα; (17)

(b) If the policy ϕ∗ is positive Harris recurrent, then it is SPAC-optimal.

4 Examples

We now discuss a number of examples from inventory theory to illus-
trate the potential of the approach used in the previous section; indeed,
in Example A we show that a K∗-threshold policy is both strong EAC
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and SPAC optimal, where the nonnegative constant K∗ solves a static
optimization problem coming from the basic data of the inventory sys-
tem. In [7], [10] and [16] are given other interesting examples, including
the LQ control problem, which satisfy the assumptions in Theorems 3.4,
3.5 and 3.6.

Recall that the stock level {xt} evolves in X := [0,∞) according to

xt+1 = min(xt + at − wt, 0), t = 1, 2, · · · ; x0 = x ∈ X, (18)

where {at} and {wt} denote the control and the demand processes,
respectively.

EXAMPLE A. We first consider the case in which the one step cost
function has the following structured cost form

C(x, a) = F1(x+ a) + ba (x, a) ∈ K, (19)

where b ≥ 0 is a constant and F1(·) is a function on [0,∞) satisfying
the following properties.

Assumption 4.1.(a) F1(·) is a continuous convex function bounded
from below;

(b) F1(y)→∞ as y →∞.
We also suppose that the next conditions hold.

Assumption 4.2(a) A = A(x) = [0,∞) ∀x ∈ X;

(b) The process {wt} is formed by i.i.d. nonnegative random variables.
The common cumulative distribution function is denoted by G(·);
(c) G(y) < 1 ∀y ≥ 0.

Throughtout this section we denote by E the expectation with re-
spect to the joint distribution of the random variables w0, w1, · · ·.
Theorem 4.3. Suppose that Assumptions 4.1 and 4.2 hold. Then, there
exists an stable policy ϕ∗ with invariant probability measure µϕ∗ such
that (ϕ∗, µϕ∗) is a minimum pair.

Proof of Theorem 4.3. We shall verify that Assumptions 2.1 and
3.1 hold; hence, the existence of the minimum pair (ϕ∗, µϕ∗) is ensured
by Theorem 3.8(a). To do this, first note that Assumption 4.1 implies
Assumption 2.1 (a) and (b), whereas Assumption 4.2(b) implies As-
sumption 2.1(c), that is, that the transition law of the inventory system
(18)

Q(B|x, a) = EIB[min(x+ a− w0, 0)] B ∈ B(X),
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is weakly continuos in (x, a) ∈ K. Finally, to verify that Assumption
3.1 holds, observe that for the policy f(x) = 0 ∀x ∈ X, the stock level
evolves according to

xt+1 = max(xt − wt, 0), t = 1, 2, · · · ; x0 = x ∈ X,

and also that they form a decreasing sequence bounded above by x0 = x.
Moreover, since

C(xt, f) = F1(xt), t = 0, 1, 2, · · · ,

and F1(·) is bounded on [0, x] by a constant, say Mx, we have that

J(f, x) <∞ ∀x ∈ X.2

We shall prove the existence of a threshold policy which is both
strong expected and sample path average cost optimal. We now intro-
duce this class of polices: for a nonnegative constant K, a stationary
policy fK is said to be K-threshold policy if fK(x) = K−x for x ∈ [0, x],
and fK(x) = 0 otherwise. We show in the next lemma that any thresh-
old policy is stable and Harris recurrent.

Lemma 4.4. Suppose that Assumptions 4.1 and 4.2 hold. Then, for
each K ≥ 0, the policy fK is stable Harris recurrent and

J(fK , x) = F1(K) + bE[min(K,w0)] ∀x ∈ X. (20)

Proof of Lemma 4.4. Let K be a nonnegative fixed constant. Note
that, from Assumption 4.2(c), fK is irreducible respect to the measure

λ(B) := IB(0) B ∈ B(X).

Moreover, direct computations yield that

µK(B) :=

∫
B

min(K − w, 0)G(dw) B ∈ B(X),

is the invariant probability measure for fK and also that

µK(B) = Q(B|x, fK) ∀B ∈ B(X), x ∈ [0,K].

Thus, [0,K] is a petite subset of X, since

Q(B|x, fK) ≥ I[0,K](x)µK(B) ∀B ∈ B(X), x ∈ X.
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Then, from [17, Theorem 10.4.10(ii), p. 246], to prove that fK is
Harris recurrent, it suffices to show that

EfKx τ <∞ ∀x ∈ X, (21)

where

τ := min{n ≥ 1 : xn ≤ K}. (22)

It is obvious that (21) holds for x0 = x ∈ [0,K]. Now consider the
case x0 = x > K and observe that

P fKx τ =
∑∞
n=0 P

fK
x [τ > n]

= 1 +
∑∞
n=1G

(n)(K − x)

≤ 1 +
∑∞
n=1[G(K − x)]n = [1−G(K − x))]−1 <∞

where G(n)(·) denotes the n-fold convolution of G(·) and the last equality
follows from Assumption 4.2(c). Hence, (21) holds.

Now, It is easy to check that (20) holds for x0 = x ∈ [0,K]. Thus,
consider x0 = x > K and define τ(n) := min(τ, n), n ∈ N. Then, from
(21) and the strong Markov propety, we see that

EfKx
∑n
t=0C(xt, fK) = EfKx

∑τ(n)−1
t=0 C(xt, fK)

+EfKx
∑n
t=τ(n)C(xt, fK)

= EfKx
∑τ(n)−1
t=0 F1(xt)

+EfKx
∑n
t=τ(n) [F1(K) + b(K − xt)]

= EfKx
∑τ(n)−1
t=0 F1(xt)

+[F1(K) + bEmin(K,w0)]EfKx [n+ 1− τ(n)].

Thus, using the fact that F1(·) is bounded on [0, x] and (21), we see
that (20) holds.

Finally, note that∫
X
C(y, fK)µK(dy) = F1(K) + bEmin(K,w0) <∞;
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that is, fK is a stable Harris recurrent policy.2

Remark 4.5(a) Define

L(y) := F1(y) + bEmin(y, w0) y ≥ 0, ρ∗ := inf
y≥0

L(y), (23)

and observe that

J(fK , x) = L(K) ∀x ∈ X. (24)

(b) Moreover, there exists a constant K∗ ≥ 0 such that

L(K∗) = ρ∗ = inf
y≥0

L(y). (25)

Indeed, this follows from the continuity of L(·) and the fact that L(y)→
∞ as y →∞. Hence, from (24), J(fK∗ , ·) = ρ∗.

Theorem 4.6 Suppose that Assumptions 4.1 and 4.2 hold. Then, the
K∗-threshold policy is strong expected and sample path average cost op-
timal, where K∗ is as in (25).

Proof of Theorem 4.6. For the proof we require some results on
discounted-cost control problems. For each α ∈ (0, 1), recall from (14)
that

Vα(δ, x) = Eδx

∞∑
t=0

αtC(xt, at), x ∈ X and δ ∈ ∆,

and define

Vα(x) := inf
δ∈∆

Vα(δ, x), x ∈ X. (26)

Now, from Theorem 4.3, there exists a stable policy ϕ∗ with invariant
probability measure µ∗ such that

J(ϕ∗, x) = j∗ µ∗-almost all x ∈ X;

thus, from a well-known Abelian Theorem (see [9], Lemma 5.3.1, p. 84),

j∗ = lim
α→1−

(1− α)Vα(ϕ, x) ≥ lim sup
α→1−

(1− α)Vα(x) µ∗-almost all x ∈ X.

Then, since Vα(·) ≥ mα ∀α ∈ (0, 1), we see from this and (17 ) that
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j∗ = lim
α→1−

(1− α)Vα(x) µ∗-almost all x ∈ X. (27)

Then, since µ∗({0}) > 0, to conclude that the K∗-threshold policy
is strong EAC and SPAC optimal, it suffices to prove that

ρ∗ = lim
α→1−

(1− α)Vα(0). (28)

In order to do this, first note that

Vα(x) ≤ Vα(fK , x) <∞ 0 ≤ x ≤ K,

where fK is the K-threshold policy; then, taking K large enough we see
that Vα(·) < ∞ ∀α ∈ (0, 1). Now, using Assumption 4.1, it is easy to
prove that Vα(·) is a convex function; thus, the function

Tα(y) := F1(y) + by + αEVα[(y − w0)+], y ≥ 0,

is convex and limy→+∞ T (y) = +∞, which imply that there exists a
constant Kα ≥ 0 such that Tα(Kα) = infy≥0 Tα(y). Hence, for each
α ∈ (0, 1), Vα(·) satisfies the α-Discounted Cost Optimality Equation
([6])

Vα(x) = min
a∈A

[
F1(x+ a) + ba+ αEVα[(x+ a− w0)+]

]
∀x ∈ X, (29)

and the Kα-threshold policy attains the minimum at the right-hand side
of (29), that is, for all x ∈ X

Vα(x) = F1(x+ fα(x)) + bfα(x) + αEVα[(x+ fα(x)− w0)+], (30)

where, for each α ∈ (0, 1), fα denotes the Kα−threshold policy.
Then, standard arguments yield

Vα(x) = Vα(fα, x) ∀x ∈ X, α ∈ (0, 1). (31)

Moreover, simple computations show that ∀α ∈ (0, 1)

(1− α)Vα(fα, 0) = F1(Kα) + αEmin(Kα, w0) + b(1− α)Kα. (32)

Now define
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Lα(y) := F1(y) + αEmin(y, w0) + b(1− α)y, y ≥ 0 and α ∈ (0, 1),

and note that, from (31)-(32), Lα(Kα) = infy≥0 Lα(y) for each α ∈
(0, 1), and also that Lα(·) ↓ L(·) as α ↑ 1, where L(·) is the function in
(23). From these facts, we see that

Lα(K∗) ≥ Lα(Kα) ≥ L(Kα) ≥ L(K∗) ∀α ∈ (0, 1),

where K∗ is as in (25). Thus, we also obtain

ρ∗ = L(K∗) = lim
α→1−

Lα(Kα) = lim
α→1−

(1− α)Vα(0),

Therefore, the K∗-threshold policy is strong EAC and SPAC optimal.
In fact,

j∗ = ρ∗ = L(K∗) = J(fK∗ , x) ∀x ∈ X. 2

Example B. We now consider a one step cost function more general
than (19). Specifically, we assume that

C(x, a) = F1(x+ a) + F2(a), (33)

where F1(·) and F2(·) are functions from [0,+∞) into itself satisfying
the following:

Assumption 4.7.(a) F1(·) and F2(·) are lower semicontinuous func-
tions bounded from below;
(b) limy→∞ F1(y) =∞;
(c) EF2(min(y, w0)) <∞ ∀y ≥ 0.

Note that Assumption 4.3 is general enough to include problems
with a set-up cost, that is, a fixed cost for placing orders ([2], [13]).

In order to guarante the existence of SPAC optimal policy for the one
step cost function (33) we require suitable strengthening of Assumption
4.2.

Assumption 4.8.(a) The process {wt} is formed by nonnegative i.i.d
random variables;
(b) w∗ :=

∫
wG(dw) <∞;

(c) A = A(x) = [0, θ] ∀x ∈ X, where θ < w∗.
(d) G(y) < 1 ∀y ≥ 0.
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The main consequence of Assuption 4.8 is given in the next lemma.

Lemma 4.9. Under Assuption 4.8, any stable policy ϕ ∈ Φ0 is Harris
recurrent.
Proof of Lemma 4.9. Let ϕ ∈ ΦS be an arbitrary but fixed stable
policy. We shall prove that the Markov chain {xt}, induced by ϕ, is an
irreducible T-chain and non-evanescent (see definitons in [17, pp. 127
and 207]). Thus, from [17, Theorem 9.22, p. 208], the policy ϕ is Harris
recurrent.

Now, that {xt} is an irreducible T-chain follows from the inequality

Q(B|x, ϕ) ≥ IB(0)[1−G(x+ θ)] B ∈ B(X), x ∈ X,

which can be verified by direct computations.
On the other hand, one can to verify that the function V (x) :=

x, x ∈ X, satisfies the “drift condition”∫
X
V (y)Q(dy|x, ϕ)− V (x) ≤

∫ x+θ

0
(θ − w)G(dw) ∀x ∈ X.

Next, from Assumption 4.8(c), there exists a nonnegative real number
y0 > θ such that∫ x+θ

0
(θ − w)G(dw) < 0 ∀x > y0 − θ.

Then, since V (·) is strictly unbounded on X, we have that {xt} is Harris
recurrent (see [17, Theorem 9.4.1, p. 208]).

Theorem 4.10. If Assumptions 4.1 and 4.3 hold, then there exist a re-
laxed policy ϕ∗ ∈ ΦHR which is SPAC-optimal and, moreover, J(ϕ∗, x) =
j∗ µ∗-almost all x ∈ X.

Proof of Theorem 4.10. It is easy to check that Assuptions 2.1 and
3.1 hold; then, from Theorem 3.8(a), there exists policy ϕ∗ ∈ ΦS with
invariant probability measure µ∗ which form a minimum pair. Hence,
from Lemma 4.9 and Theorem 3.8(b), ϕ∗ is SPAC-optimal.2

Example C. An alternative to measure the inventory system perfor-
mance is to consider quadratic holding and production costs, that is,

C(x, a) = R(x− x)2 + S(a− a)2, (x, a) ∈ K, (34)

where R and S are positive constants, and x ∈ X and a ∈ A denote
the target inventory and production levels, respectively. In addition to
Assumptions 4.8, we also suppose the following:
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Assumption 4.11. The second moment of the demand variables is fi-
nite, that is,

∫+∞
0 y2G(dy) <∞.

For the cost function (34), the Assumption 2.1(a)-(b) trivially holds,
while Assumption 4.10 ensures that j∗ is finite. Indeed, consider the
stationary policy f(x) = 0, ∀x ∈ X, and compute its average cost to
obtain

J(f, x) = x2 + a2, ∀x ∈ X.

This facts yield the following:

Theorem 4.12. Suppose that Assumptions 4.8 and 4.11 hold. Then,
there exists a relaxed policy ϕ∗ ∈ ΦHR which is SPAC-optimal.

Example D. The paper [18] studies a finite horizon control problem
for an inventory system considering a variant of (34), in which there is
a “cost free interval” containing the target stock level. More precisely,
they take as the holding cost the function

C(y) :=


R1(y − α)2 if 0 ≤ y < α
0 if α ≤ y ≤ β
R2(y − β)2 if y > β

with 0 < α < β and R1, R2 are positive constants, and the one-step cost
function is given as

C(x, a) = EC(x+ a− w0) + S(a− a)2, (x, a) ∈ K. (35)

As in Example C, it is easy to establish the following results.

Theorem 4.13. Suppose that Assumptions 4.8 and 4.11 hold. Then,
there exists ϕ∗ ∈ ΦHR which is SPAC-optimal.
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for many useful comments on this paper. Acknowledgments are also
due to the referees for their criticisms, which improved in several ways
this work.

Oscar Vega-Amaya
Departmento de Matemáticas,
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