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ADAPTIVE POLICIES FOR

DISCRETE-TIME MARKOV

CONTROL PROCESSES WITH

UNBOUNDED COSTS: AVERAGE

AND DISCOUNTED CRITERIA ∗

J. ADOLFO MINJÁREZ-SOSA 1

Abstract

We consider a class of discrete-time Markov control processes
with Borel state and action spaces, and possibly unbounded costs.
The processes evolve according to the system equation xt+1 =
F (xt, at, ξt), t = 1, 2, ... with i.i.d. <k− valued random vectors ξt,
whose density ρ is unknown. Assuming observability of {ξt}, we
introduce two adaptive policies which are, respectively, asymptot-
ically discounted cost optimal and average cost optimal.
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1 Introduction

We consider a class of discrete-time Markov control processes (MCPs)
evolving according to the system equation

xt+1 = F (xt, at, ξt), t = 0, 1, ..., (1)
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where F is a known function, xt, at, and ξt are the state, action, and
the random disturbance at time t, respectively. The disturbances are
independent and identically distributed (i.i.d.) random vectors in <k
having density ρ which is unknown to a controller.

Assuming that the realizations of the processes {ξt} and {xt} are
completely observable, our main objective is to introduce adaptive poli-
cies which are (1) asymptotically optimal with respect to the discounted
criterion, and (2) optimal in the average case. Since ρ is unknown, this
adaptive policies combine suitable methods of statistical estimation of ρ
and choice of actions at as a function of a ”history” (x0, a0, ξ0, ..., xt−1,
at−1, ξt−1, xt) and of an estimator ρt of ρ.

The first adaptive policy is obtained by applying the ”Principle of
Estimation and Control” described by Mandl in [15] as the method of
substituting the estimates into optimal stationary controls. This policy
has been studied, for instance, in [11], [13], [3], all them considering
bounded one-stage costs.

The average optimality of the second policy is studied via the av-
erage cost optimality inequality, and using a variant of the so-called
vanishing discount factor approach [2], for which, taking advantage of
the results obtained for the discounted case, we fix an appropriate se-
quence {αt}, αt ↗ 1, of discount factors, and exploit the corresponding
αt− discounted optimality equations, taking limit as t →∞. This pol-
icy was originally introduced in [4] and revised in [11], both considering
bounded one- stage costs.

Allowing unbounded costs imposes serious difficulties. First, the nice
contractive-operator techniques do not work for both, discounted and
average criteria, and so, we are forced to impose Lippman-like conditions
([14], [20]) on the transition probability of the process; we are thus
able to use the results in [5]. Second, we need methods of statistical
estimation of ρ that provide information about the Lq−norm accuracy
‖ρt − ρ‖q of estimator ρt, t = 1, 2, ....

The paper is organized as follows. In Section 2 we introduce the
Markov control model we deal with. Next, in Section 3, we list some pre-
liminary results, proved in previous works, that summarize important
facts to be used in Sections 4 and 5, where we construct, respectively,
adaptive policies asymptotically discounted cost optimal and average
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cost optimal. Finally, an example of a queueing system with control-
lable service rate that satisfies all hypotheses of the paper is described
in Section 6.

2 The control Model

We consider a class of discrete-time Markov control models (X,A,<k, F,
ρ, c) satisfying the following conditions.

The state space X, and the action space A are both Borel spaces.
The dynamics is defined by the system equation (1). Here F : X ×
A × <k → X is a given (known) measurable function, and {ξt}, is
a sequence of independent and identically distributed (i.i.d.) random
vectors (r.v.’s) on a probability space (Ω,F , P ), with values in <k and
a common distribution with an unknown density ρ, that belongs to a
given class described below.

For each x ∈ X, A(x) denotes the set of admissible controls (or
actions) when the state is x. The sets A(x) are supposed to be nonempty
measurable subsets of A, and the set

K = {(x, a) : x ∈ X, a ∈ A(x)}

of admissible state-action pairs is assumed to be a Borel subset of the
Cartesian product of X and A. Finally, the cost-per-stage c(x, a) is a
nonnegative measurable real-valued function on K, possibly unbounded.

For each density µ on <k, Qµ(· | ·) is a stochastic kernel on X given
K, defined as

Qµ(B | x, a) :=

∫
<k

1B[F (x, a, s)]µ(s)ds, B ∈ B(X), (x, a) ∈ K, (2)

where 1B(·) stands for the indicator function of the set B, and B(X) is
the Borel σ- algebra of X.

We define the spaces of admissible histories up to time t by H0 := X
and Ht := (K×<k)t × X, t ∈N:= {1, 2, ...}. A generic element of Ht

is written as ht = (x0, a0, ξ0, ..., xt−1, at−1, ξt−1, xt). A control policy
π = {πt} is a sequence of measurable functions πt :Ht → A such that



44 J. ADOLFO MINJÁREZ-SOSA

πt(ht) ∈ A(xt), ht ∈Ht, t ≥ 0. By Π we denote the set of all control
policies and by F⊂ Π the subset of stationary policies. As usual, every
stationary policy π ∈F is identified with a measurable function f :
X → A such that f(x) ∈ A(x) for every x ∈ X, so that π is of the form
π = {f, f, f, ...}. In this case we use the notation f for π and we write

c(x, f) := c(x, f(x)) and F (x, f, s) := F (x, f(x), s) , x ∈ X, s ∈ <k.

Optimality criteria. Given the initial state x0 = x, when using a
policy π ∈ Π, we define the total expected α− discount cost as

Vα(π, x) := Eπx

[ ∞∑
t=0

αtc(xt, at)

]
, (3)

where α ∈ (0, 1) is the so-called discount factor, and Eπx denotes the ex-
pectation operator with respect to the probability measure P πx induced
by the policy π, given the initial state x0 = x (see, e.g., [1], p. 140). We
also define the long run expected average cost as

J(π, x) := lim sup
n→∞

n−1Eπx

[
n−1∑
t=0

c(xt, at)

]
. (4)

The functions

Vα(x) := inf
π∈Π

Vα(π, x) and J(x) := inf
π∈Π

J(π, x), x ∈ X, (5)

are the optimal α− discounted cost and the optimal average cost, re-
spectively, when the initial state is x. A policy π∗ ∈ Π is said to be
α−discounted optimal (or simply α− optimal) if Vα(x) = Vα(π∗, x) for
all x ∈ X. Similarly, a policy π∗ ∈ Π is said to be average cost optimal
(AC- optimal) if J(x) = J(π∗, x) for all x ∈ X.

For a given measurable function W : X → [1,∞), L∞W denotes the
normed linear space of all measurable functions u : X → < with

‖u‖W := sup
x∈X

|u(x)|
W (x)

<∞. (6)

To guarantee the existence of ”measurable minimizers” we need ap-
propriate (semi-) continuity and (σ-) compactness conditions on some
components of the Markov control model, as follows.



ADAPTIVE POLICIES FOR MCPs 45

Assumption 2.1 a) For every x ∈ X the function a→ c(x, a) is lower
semicontinuous (l.s.c.) and sup

A(x)
|c(x, a)| ≤W (x);

b) for each x ∈ X, A(x) is a σ− compact set.

Remark 2.2 Throughout the paper, we fix an arbitrary ε ∈ (0, 1/2)
and denote q := 1 + 2ε. Also we choose and fix a nonnegative function
ρ: <k → < which is used as a known majorant of the unknown density
ρ of the r.v.’s ξt in (1).

Assumption 2.3 a) For every s ∈ <k,

ϕ(s) := sup
X

[W (x)]−1 sup
A(x)

W [F (x, a, s)] <∞. (7)

b)
∫
<k

ϕ2(s)
∣∣ρ (s)

∣∣1−2ε
ds <∞.

The function ϕ in (7) might be nonmeasurable. In this case we
suppose the existence of a measurable majorant ϕ of ϕ for which As-
sumption 2.3(b) holds.

3 Preliminaries on the discounted criterion

For construction of the adaptive policy under the discounted criterion,
we suppose that ρ belongs to the set of densities D0 defined as follows.

Definition 3.1 The set D0 = D0(ρ, L, β0, b0, p, q) consists of the den-
sities µ on <k for which the following conditions hold.
a) µ ∈ Lq(<k);

b) there exists a constant L such that for each z ∈ <k

‖∆zµ‖Lq
≤ L |z|1/q , (8)

where ∆zµ(x) := µ(x+ z)−µ(x), x ∈ <k and |·| is the Euclidean norm
in <k;
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c) µ(s) ≤ρ (s) almost everywhere with respect to the Lebesgue measure;

d) for every x ∈ X, a ∈ A(x)∫
<k

W p[F (x, a, s)]µ(s)ds ≤ β0W
p(x) + b0, (9)

where p > 1, β0 < 1, b0 <∞ are arbitrary but fixed.

In Section 6 we give an example of a queueing system with a con-
trollable service rate for which all assumptions presented in this paper
hold.

Remark 3.2 When k = 1 it is not difficult (see [17], p. 13) to show
that a sufficient condition for (8) is the following. There are a finite set
G ⊂ < (possibly empty) and a constant M ≥ 0 such that:

i) µ has a bounded derivative µ′ on <\G which belongs to Lq;
ii) the function |µ′(x)| is nonincreasing for x ≥M and nondecreas-

ing for x ≤ −M.
Note that G includes points of discontinuity of µ if such points exist.

Now we state some results that will be useful in the next section.
Each of these results is provided with references for its proof.

Lemma 3.3 [7] Suppose that Assumption 2.1(a) holds and ρ satisfies
the condition (9). Then

a) for every x ∈ X, a ∈ A(x)∫
<k

W [F (x, a, s)]ρ(s)ds ≤ βW (x) + b, (10)

where β = β
1/p
0 , b = b

1/p
0 ;

b) supt≥1E
π
x [W p(xt)] < ∞ and supt≥1E

π
x [W (xt)] < ∞ for each π ∈

Π, x ∈ X.
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Lemma 3.4 Let α ∈ (0, 1) be an arbitrary but fixed discount factor.
Then,

a) [12] if ρ satisfies either (9) or (10), then, under Assumption 2.1(a),
we have that Vα(x) ≤ CW (x)/(1 − α) for some constant C > 0, and
Vα(·) satisfies the dynamic programming equation, i.e.,

Vα(x) = inf
a∈A(x)

c(x, a) + α

∫
<k

Vα[F (x, a, s)]ρ(s)ds

 , x ∈ X; (11)

b) under Assumption 2.1, for each δ > 0 there exists a policy f ∈F such
that

c(x, f) + α

∫
<k

Vα[F (x, f, s)]ρ(s)ds ≤ Vα(x) + δ, x ∈ X. (12)

From the fact that Qρ(· | ·) is a stochastic kernel [see (2)], it is easy
to prove that for every non-negative function u ∈ L∞W , and every r ∈ <,
the set (x, a) :

∫
<k

u[F (x, a, s)]ρ(s)ds ≤ r


is Borel in K. Using this fact, part (b) of Lemma 3.4 is a consequence
of Corollary 4.3 in [18].

Density Estimation. To conclude this section, we present a procedure
for the statistical estimation of ρ, for which we suppose ρ ∈ D0.

Denote by ξ0, ξ1, ..., ξt−1 the independent realizations (observed up
to the moment t−1) of r.v.’s with the unknown density ρ ∈ D0. Let ρ̂t :=
ρ̂t(s; ξ0, ξ1, ..., ξt−1), s ∈ <k, be an arbitrary estimator of ρ belonging to
Lq, such that for some γ > 0

E ‖ρ− ρ̂t‖
qp′
2
q = O(t−γ) as t→∞, (13)

where 1/p+ 1/p′ = 1.
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Then, we estimate ρ by the projection ρt of ρ̂t on the set of densities
D := D1 ∩D2 in Lq where

D1 := {µ : µ is a density on <k, µ ∈ Lq and µ(s) ≤ρ (s) a.e.};

D2 :=
{
µ : µ is a density on <k, µ ∈ Lq,

∫
W [F (x, a, s)]µ(s)ds

≤ βW (x) + b, (x, a) ∈ K} (14)

[see Lemma 3.3 for the constants β and b].

The existence (and uniqueness) of the estimator ρt is guaranteed
because the set D is convex and closed in Lq [7]. In fact, we have

‖ρt − ρ̂t‖q = inf
µ∈D
‖µ− ρ̂t‖q , t ∈ N, (15)

that is, the density ρt ∈ D is the ”best approximation” of the estimator
ρ̂t on the set D. The fact that ρ ∈ D0 and Lemma 3.3(a) yield ρ ∈ D0 ⊂
D. Examples of estimators satisfying (13) are given in [9].

Now we define the pseudo-norm ‖·‖ (possibly taking infinite values)
on the space of all densities µ on <k by setting

‖µ‖ := sup
X

[W (x)]−1 sup
A(x)

∫
<k

W [F (x, a, s)]µ(s)ds. (16)

Lemma 3.5 [7], [8] Suppose that Assumption 2.3 holds and ρ ∈ D0.
Then

E ‖ρt − ρ‖p
′

= O(t−γ) as t→∞. (17)

Throughout the paper we will repeatedly use the following inequal-
ities:

|u(x)| ≤ ‖u‖W W (x) (18)

and ∫
<k

u[F (x, a, s)]µ(s)ds ≤ ‖u‖W [βW (x) + b] (19)

for all u ∈ L∞W , µ ∈ D, x ∈ X, a ∈ A(x). The relation (18) is a conse-
quence of the definition of ‖·‖W , and (19) holds because of (10) and the
definition of D.
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4 Adaptive policies in the discounted case

The optimality of adaptive policies constructed under the discounted
criterion is studied in the sense of the following definition.

Definition 4.1 a) [19] A policy π ∈ Π is said to be asymptotically
discount optimal if, for each x ∈ X,

Eπx [Φ(xt, at)]→ 0 as t→∞,

where at = πt(ht) and

Φ(x, a) := c(x, a) + α

∫
<k

Vα[F (x, a, s)]ρ(s)ds− Vα(x), (20)

for (x, a) ∈ K, is the so-called discounted discrepancy function, which
is nonnegative in view of Lemma 3.4.

b) Let δ ≥ 0. A policy π is δ−asymptotically discount optimal if, for
each x ∈ X,

lim sup
t→∞

Eπx [Φ(xt, at)] ≤ δ.

For the construction of adaptive policies we replace the unknown
density ρ by its estimates ρt and exploit the corresponding optimality
equations [11]. To do this we need to extend some assertions in the
previous section on the densities ρt.

The proof of Lemmas 3.3 and 3.4 (partly given in [12]) shows that
the following assertions hold true (because only (10) is used here).

Proposition 4.2 a) Suppose that Assumption 2.1(a) holds. Then, for
each t ∈N there is a unique function Vt ∈ L∞W such that

Vt(x) = inf
A(x)

c(x, a) + α

∫
<k

Vt[F (x, a, s)]ρt(s)ds

 , x ∈ X, (21)

Moreover, Vt(x) ≤ C/(1− α)W (x), t ∈N, x ∈ X.
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b) Under Assumption 2.1, for each t ∈N and δ∗t > 0 there exists a
stationary policy ft ∈F such that

c(x, ft) + α

∫
<k

Vt[F (x, ft, s)]ρt(s)ds ≤ Vt(x) + δ∗t , x ∈ X. (22)

The minimization in (21) is done for every ω ∈ Ω. Similarly, in
the following we suppose that the minimization of a term including the
estimator ρt is done for every ω ∈ Ω.

Now we introduce an adaptive policy π∗, which is a slight extension
of “The Principle of Estimation and Control” policy [15].

Definition 4.3 Let {δ∗t } be an arbitrary sequence of positive numbers,
and {ft} a sequence of functions satisfying (22) for each t ∈N. We
define the adaptive policy π∗ = {π∗t } as follows:

π∗t (ht) = π∗t (ht; ρt) := ft(xt), ht ∈ Ht, t ∈ N,

while π∗0(x) is any fixed action in A(x).

We are now ready to state our first main result. Supposing that
{δ∗t } converges, we denote δ∗ := limt→∞ δ

∗
t .

Theorem 4.4 Suppose that Assumptions 2.1 and 2.3 hold, and ρ ∈ D0.
Then the adaptive policy π∗ is δ∗−asymptotically discount optimal. In
particular, if δ∗ = 0 then the policy π∗ is asymptotically discount opti-
mal.

Proof: For every µ ∈ D let us define the operator

Tµu(x) = inf
A(x)

c(x, a) + α

∫
<k

u[F (x, a, s)]µ(s)ds

 , (23)

x ∈ X, u ∈ L∞W . By Assumption 2.1(a), the definition of D and (19), T
maps L∞W into itself.
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Let us fix an arbitrary number θ ∈ (α, 1) and set W (x) := W (x) +
d, x ∈ X, where d := b (θ/α− 1)−1 . Also we define the space L∞

W
of

measurable functions u : X → < with the norm

‖u‖
W

:= sup
x∈X

|u(x)|
W (x)

<∞.

It is easy to see that

‖u‖
W
≤ ‖u‖W ≤ ‖u‖W (1 + d) . (24)

Hence L∞W = L∞
W

and the norms ‖·‖W and ‖·‖
W

are equivalent.

In Lemma 2 of [20] it was proved that the inequality∫
<k

W [F (x, a, s)]µ(s)ds ≤W (x) + b

implies that the operator Tµ in (23) is a contraction with respect to the
norm ‖·‖

W
with modulus θ, that is,

‖Tµv − Tµu‖W ≤ θ ‖v − u‖W , v, u ∈ LW . (25)

By virtue of (11) and (25) the function Vα is a unique (in L∞W ) fixed
point of the operator Tρ, while Vt is a fixed point (unique in L∞W ) of Tρt
for each t ∈N, that is

TρVα = Vα, TρtVt = Vt. (26)

We also have

‖Vα − Vt‖W =
∥∥TρVα − TρtVt∥∥W ≤ ∥∥TρVα − TρtVα∥∥W

+
∥∥TρtVα − TρtVt∥∥W ≤ ∥∥TρVα − TρtVα∥∥W + θ ‖Vα − Vt‖W ,

or

‖Vα − Vt‖W ≤
1

1− θ
∥∥TρVα − TρtVα∥∥W , t ∈ N. (27)

Now, from definition (16), Lemma 3.4 and the fact [W (·)]−1 < [W (·)]−1,
we obtain
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∥∥TρVα − TρtVα∥∥W ≤ α sup
X

[W (x)]−1 sup
A(x)

∫
<k

Vα[F (x, a, s)] |ρ(s)− ρt(s)| ds

≤ αC

1− α
sup
X

[W (x)]−1 sup
A(x)

∫
<k

W [F (x, a, s)] |ρ(s)− ρt(s)| ds

≤ C

1− α
‖ρ− ρt‖ , t ∈ N. (28)

From (24) and combining (27) and (28), for each t ∈N, we get

‖Vα − Vt‖W ≤ (1 + d) ‖Vα − Vt‖W ≤
C(1 + d)

(1− θ)(1− α)
‖ρ− ρt‖ . (29)

On the other hand, we define for each t ∈N the function Φ∗t :K→ < as:

Φ∗t (x, a) := c(x, a) + α

∫
<k

Vt[F (x, a, s)]ρt(s)ds− Vt(x), (x, a) ∈ K.

By the definition of Φ (see (20)) we get (by adding and subtracting the
term α

∫
<k Vt[F (x, a, s)]ρ(s)ds )

|Φ∗t (x, a)− Φ(x, a)| ≤

|Vα(x)− Vt(x)|+ α

∫
<k

Vt[F (x, a, s)] |ρt(s)− ρ(s)| ds

+α

∫
<k

|Vt[F (x, a, s)]− Vα[F (x, a, s)]| ρ(s)ds

≤ ‖Vα − Vt‖W W (x) +
αC

1− α

∫
<k

W [F (x, a, s)] |ρt(s)− ρ(s)| ds

+α[βW (x) + b] ‖Vt − Vα‖W
for each (x, a) ∈K, t ∈N (see Proposition 4.2(a)). Hence, from the
definition of ‖·‖ in (16) and the inequalities (29),

sup
X

[W (x)]−1 sup
A(x)
|Φ∗t (x, a)− Φ(x, a)| ≤ C ′ ‖ρt − ρ‖ , (30)
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where C ′ = C
1−α

[
1 + 1+β+b

1−θ

]
. Moreover, by the definition of the pol-

icy π∗ (see Definition 4.3) and of the functions ft in (22), we have
Φ∗t (·, π∗t (·)) ≤ δt, t ∈N. Thus

Φ(xt, π
∗
t (ht)) ≤ |Φ(xt, π

∗
t (ht))− Φ∗t (xt, π

∗
t (ht)) + δt|

≤ sup
A(xt)

|Φ(xt, a)− Φ∗t (xt, a)|+ δt

≤W (xt) sup
X

[W (x)]−1 sup
A(x)
|Φ(x, a)− Φ∗t (x, a)|+ δt

≤ C ′W (xt) ‖ρt − ρ‖+ δt , t ∈ N. (31)

The latter inequality implies

Eπ
∗

x [Φ(xt, at)] ≤ C ′Eπ
∗

x [W (xt) ‖ρt − ρ‖] + δt,

and, therefore, to prove δ−optimality of the policy π∗ it is enough
to show that Eπ

∗
x [W (xt) ‖ρt − ρ‖] → 0 as t → ∞. For this, denoting

C:=
(
Eπ
∗

x [W p(xt)]
)1/p

<∞ [see Lemma 3.3(b)], and applying Holder’s
inequality, we have

Eπ
∗

x [W (xt) ‖ρt − ρ‖] ≤C
(
Eπ
∗

x

[
‖ρt − ρ‖p

′
])1/p′

.

Observing that Eπx

[
‖ρt − ρ‖p

′
]

= E
[
‖ρt − ρ‖p

′
]

(since ρt do not depend

on x and π), Lemma 3.5 yield the desired results.

5 Adaptive policies in the average case

Throughout this section, we suppose that ρ belongs to the set of densi-
ties D′0 defined as follows.

Definition 5.1 Let q and ρ be as in Remark 2.2. We define the set
D′0 := D′0(ρ, L, β0, b0, p, q,m, ψ, ψ) as the set consisting of all densities
µ on <k with the following properties:

a) The conditions (a)-(c) in Definition 3.1 hold.

b) For every f ∈F the Markov xft process with the transition probability
Qµ(B | x, f), B ∈B(X), is positive Harris-recurrent.
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c) There exists a probability measure m on (X,B(X)) and a nonnegative
number β0 < 1 and, for every f ∈F, a nonnegative function ψf : X → <
such that for any x ∈ X and B ∈B(X),

i) Qµ(B | x, f) ≥ ψf (x)m(B);

ii)
∫
<k

W p[F (x, f, s)]µ(s)ds ≤ β0W
p(x) + ψf (x)b0 for some p > 1,

with b0 :=
∫
X

W p(y)m(dy) <∞;

iii) inf
f∈F

∫
X

ψf (x)m(dx) :=ψ> 0.

Remark 5.2 a) The set D′0 is more restrictive than the set of densities
D0 used for the discounted criterion because of additional difficulties in
the asymptotic analysis of the average cost.

b) Observe that to define the set D0 for the discounted criterion it was
only necessary to impose the conditions 5.1(a) together with

∫
<k

W p[F (x, f, s)]µ(s)ds ≤ β0W
p(x) + b0, x ∈ X, a ∈ A(x), (32)

where p > 1, β0 < 1, b0 < ∞. But, as was observed in Remark 2.2(b)
in [8], the relation (32) follows from conditions c(i) and c(ii) using the
same p, β0 and b0.

c) Considering Remark 5.2(b) , under Assumption 2.1 and supposing
that ρ satisfies the relation (32) [see (9)], the results of Lemmas 3.2 and
3.3 hold.

The optimality of the policy constructed in this section is studied
via the so- called average cost optimality inequality, which is stated in
the following results.

Lemma 5.3 [5] Suppose that Assumption 2.1 holds and ρ ∈ D′0. Then,
there exist a constant j∗ and a function φ in L∞W such that

j∗ + φ(x) ≥ inf
A(x)

c(x, a) +

∫
<k

φ[F (x, a, s)]ρ(s)ds

 , (33)

and j∗ = infπ∈Π J(π, x) for all x ∈ X.
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Remark 5.4 a) In [5] has been shown that j∗ = lim supα↗1 jα where j∗

is the optimal average cost and, for z ∈ X fixed, jα := (1−α)Vα(z), α ∈
(0, 1). Using the same arguments as in the proof of the latter assertion,
we can get also that j∗ = lim infα↗1 jα. Hence,

lim
t→∞

jαt = j∗, (34)

for any sequence {αt} of factor discount such that αt ↗ 1. In fact
(j∗, φ), with φ(x) := limt→∞ φαt(x), x ∈ X, satisfies the optimality
inequality (33), where φα(x) := Vα(x)− Vα(z). Furthermore, also in [5]
was proved that,

sup
α∈(0,1)

‖φα‖W <∞. (35)

b) From the definition of jα and φα, it is easy to see that the equation
(11) and the inequality (12) are equivalent, respectively, to

jα + φα(x) = inf
A(x)

c(x, a) + α

∫
<k

φα[F (x, a, s)]ρ(s)ds

 , (36)

and

c(x, f) + α

∫
<k

φα[F (x, f, s)]ρ(s)ds ≤ jα + φα(x) + δ. (37)

for x ∈ X, α ∈ (0, 1).

Remark on density estimation. Observe that the density estimation
scheme for ρ ∈ D0 proposed for the discounted criterion, only depends
on the conditions (a)-(d) in Definition 3.1. In view of condition 5.1(a)
in Definition 5.1 and Remark 5.2(b), we can also apply this procedure
to construct an estimator ρt of a density ρ ∈ D′0 such that ρt ∈ D1 ∩D2

[see (14)] and (17)] holds.

Let ν be an arbitrary real number such that 0 < ν < γ/(3p′) where
γ and p′ are from (13). We fix an arbitrary nondecreasing sequence of
discount factors {αt}, such that 1− αt = O(t−ν) as t→∞, and

lim
n→∞

κ(n)

n
= 0, (38)
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where κ(n) is the number of changes of value of {αt} on [0, n].

For a fixed t, let V
(ρt)
αt (π, x) := Eπ,ρtx [

∑∞
n=0 α

n
t c(xn, an)] be the to-

tal expected αt-discount cost for the process (1) in which all the r.v.’s

ξ1, ξ2, ..., have the same density ρt, and let V
(ρt)
αt (x) := infπ∈Π V

(ρt)
αt (π, x),

x ∈ X, be the corresponding value function. The sequences φ
(ρt)
αt (·) and

j
(ρt)
αt are defined accordingly [see Remark 5.4]. Thus [see (36)],

j(ρt)
αt

+ φ(ρt)
αt

(x) = inf
A(x)

c(x, a) + αt

∫
<k

φ(ρt)
αt

[F (x, a, s)]ρt(s)ds

 , (39)

for all x ∈ X, t ∈N. For each t ∈N and µ ∈ D, let us define the operator
Tµ,αt ≡ Tµ : L∞W → L∞W as

Tµu(x) := inf
A(x)

c(x, a) + αt

∫
<k

u[F (x, a, s)]µ(s)ds

 , (40)

for x ∈ X, u ∈ L∞W .

The proof of Lemma 3.4 and Proposition 4.2 shows that the following
assertions hold.

Proposition 5.5 a) Suppose that Assumption 2.1(a) holds and that ρ
satisfies the condition (32). Then, for each t ∈N, we have TρVαt = Vαt ,

TρtV
(ρt)
αt = V

(ρt)
αt , and

Vαt(x) ≤ C

1− αt
W (x), V (ρt)

αt
(x) ≤ C

1− αt
W (x), x ∈ X. (41)

b) Under Assumptions 2.1, for each t ∈N, x ∈ X and δt > 0, there
exists a policy f̂t ∈F such that

c(x, f̂t) + αt

∫
<k

V (ρt)
αt

[F (x, f̂t, s)]ρt(s)ds ≤ V (ρt)
αt

(x) + δt, (42)

or [see Remark 5.4(b)]

c(x, f̂t) + αt

∫
<k

φ(ρt)
αt

[F (x, f̂t, s)]ρt(s)ds ≤ j(ρt)
αt

+ φ(ρt)
αt

(x) + δt. (43)
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Definition 5.6 Let {δt} be an arbitrary sequence of positive numbers

and
{
f̂t

}
be a sequence of functions in F satisfying ( 42) or (43) for each

t ∈N. The adaptive policy π̂ = {π̂t} is defined as π̂t(ht) = π̂t(ht; ρt) :=
f̂t(xt), t ∈N, where π̂0(x) is any fixed action.

Supposing that δ := limt→∞ δt < ∞, we introduce our second main
result as follows:

Theorem 5.7 Suppose that Assumptions 2.1 and 2.3 hold, and ρ ∈ D′0.
Then the adaptive policy π̂ is δ− average cost optimal, i.e., for each
x ∈ X, J(π̂, x) ≤ j∗ + δ, where j∗ is the optimal average cost as in
Lemma 5.3.

In particular, if δ = 0 then the policy π̂ is average cost optimal.

The proof of this theorem is based on the following lemma:

Lemma 5.8 Under assumptions 2.1 and 2.3, for each x ∈ X and π ∈
Π, we have

a) lim
t→∞

Eπx

∥∥∥φαt − φ(ρt)
αt

∥∥∥p′
W

= 0, b) lim
t→∞

Eπx

[∥∥∥φαt − φ(ρt)
αt

∥∥∥
W
W (xt)

]
= 0.

Part a) is proved observing first that∥∥∥φαt − φ(ρt)
αt

∥∥∥
W
≤ 2

∥∥∥Vαt − V (ρt)
αt

∥∥∥
W
,

and so applying similar ideas to those used to prove (29), (see [16] for
details) we get

lim
t→∞

Eπx

∥∥∥Vαt − V (ρt)
αt

∥∥∥p′
W

= 0, x ∈ X, π ∈ Π.

For the part b), denoting C:= (Eπx [W p(xt)])
1/p < ∞ [see Lemma

3.3(b)], applying the Holder’s inequality and using part a), we have as
t→∞,
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Eπx

∥∥∥φαt − φ(ρt)
αt

∥∥∥
W
W (xt) ≤C

(
Eπx

[∥∥∥φαt − φ(ρt)
αt

∥∥∥p′
W

])1/p′

→ 0.

Proof of Theorem 5.7.
Let {kt} := {(xt, at)} be a sequence of state-action pairs correspond-

ing to applications of the adaptive policy π̂. We define

Lt := c(kt) + αt

∫
<k

φαt [F (kt, s)]ρ(s)ds− jαt − φαt(xt) (44)

= c(kt) + αtE
π̂
x [φαt(xt+1) | kt]− jαt − φαt(xt).

Hence, for n ≥ k ≥ 1

n−1Eπ̂x

[
n∑
t=k

c(kt)− jαt

]
= n−1Eπ̂x

[
n∑
t=k

(φαt(xt)− αtφαt(xt+1))

]

+n−1Eπ̂x

[
n∑
t=k

Lt

]
. (45)

On the other hand, from (35), Lemma 3.3(b) [see Remark 5.2(c)] and
(18) we have Eπ̂x [φα(xt)] < C ′, α ∈ (0, 1), for a constant C ′ <∞. Thus,
denoting α∗1, α

∗
2, ..., α

∗
κ(n), n ≥ 1, the different values of αt for t ≤ n, and

using that {αt} is a nondecreasing sequence we have [see condition (38)
and the definition of φα]

n−1Eπ̂x

[
n∑
t=k

(φαt(xt)− αtφαt(xt+1))

]

= n−1Eπ̂x

[
n∑
t=k

(φαt(xt)− αtφαt(xt))

]

+n−1Eπ̂x

[
n∑
t=k

αt (φαt(xt)− φαt(xt+1))

]
≤ (1− αk)C ′ + n−12C ′

κ(n)∑
i=1

α∗i

≤ (1− αk)C ′ + 2C ′κ(n)n−1, x ∈ X. (46)
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Now, from (44) and (36) we have

Lt = c(kt) + αt

∫
<k

φαt [F (kt, s)]ρ(s)ds

− inf
A(xt)

c(xt, a) + αt

∫
<k

φαt [F (xt, a, s)]ρ(s)ds


≤ |I1(t)|+ |I2(t)|+ |I3(t)| ,

where

I1(t) := αt

∫
<k

φαt [F (kt, s)]ρ(s)ds− αt
∫
<k

φ(ρt)
αt

[F (kt, s)]ρ(s)ds,

I2(t) := αt

∫
<k

φ(ρt)
αt

[F (kt, s)]ρ(s)ds− αt
∫
<k

φ(ρt)
αt

[F (kt, s)]ρt(s)ds,

I3(t) := c(kt) + αt

∫
<k

φ(ρt)
αt

[F (kt, s)]ρt(s)ds

− inf
A(xt)

c(xt, a) + αt

∫
<k

φαt [F (xt, a, s)]ρ(s)ds


Using (18) and (10) [see Remark 5.2(c)],

|I1(t)| ≤ αt
∫
<k

∣∣∣φαt [F (kt, s)]− φ(ρt)
αt

[F (kt, s)]
∣∣∣ ρ(s)ds

≤ αt
∥∥∥φαt − φ(ρt)

αt

∥∥∥
W

[βW (xt) + b]. (47)

Taking expectation Eπ̂x on both sides of (47) and using the Lemma 5.8,
we get

Eπ̂x |I1(t)| → 0, as t→∞. (48)

To show that Eπ̂x |I2(t)| → 0, first we have, from definition of αt and
(41),
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∥∥∥φ(ρt)
αt

∥∥∥
W
≤ 2

∥∥∥V (ρt)
αt

∥∥∥
W
≤ 2C

1− αt
= O(tν).

Thus, from definition (16),

|I2(t)| ≤ αt
∫
<k

φ(ρt)
αt

[F (kt, s)] |ρ(s)− ρt(s)| ds

≤ αtW (xt)
∥∥∥φ(ρt)

αt

∥∥∥
W
‖ρ− ρt‖ . (49)

Hence, taking expectation and applying Holder’s inequality in (49) we
get

Eπ̂x |I2(t)| ≤
(

[O(tν)]p
′
Eπ̂x ‖ρ− ρt‖

p′
)1/p′

=
[
O(tνp

′−γ)
]1/p′

→ 0 as t→∞, (50)

due to the fact ν < γ/p′ [see definition of αt].

For the term |I3(t)| , from the definition of the policy π̂ and combin-
ing (39) and (43), adding and substracting the term

inf
A(xt)

c(xt, a) + αt

∫
<k

φ(ρt)
αt

[F (xt, a, s)]ρt(s)ds


in I3(t), we get

|I3(t)| ≤ δt + αt sup
A(xt)

∣∣∣∣∣∣
∫
<k

φ(ρt)
αt

[F (xt, a, s)]ρt(s)ds

−
∫
<k

φαt [F (xt, a, s)]ρ(s)ds

∣∣∣∣∣∣
The latter inequality yields

|I3(t)| ≤ δt + αt sup
A(xt)

∫
<k

φ(ρt)
αt

[F (xt, a, s)] |ρ(s)− ρt(s)| ds
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+αt sup
A(xt)

∫
<k

∣∣∣φ(ρt)
αt

[F (xt, a, s)]− φαt [F (xt, a, s)]
∣∣∣ ρ(s)ds.

Thus, from (16),

|I3(t)| ≤ δt + αtW (xt)
∥∥∥φ(ρt)

αt

∥∥∥
W
‖ρ− ρt‖

+αt

∥∥∥φαt − φ(ρt)
αt

∥∥∥
W

[βW (x) + b].

Hence, from (47), (48), (49) and (50), we get Eπ̂x |I3(t)| → δ, as
t→∞. Therefore

Eπ̂x [Lt]→ δ, as t→∞. (51)

Finally, from (45), (46) and (51), we have for any k ≥ 1 and n→∞,

n−1Eπ̂x

[
n∑
t=k

c(kt)− jαt

]
= (1− αk)C ′ + o(1) + δ, x ∈ X.

It follows that [from (34), the fact that limt→∞ αt = 1, and (4)]

J(π̂, x) ≤ j∗ + δ, x ∈ X.

This completes the proof of the theorem.

6 Example

We consider a control process of the form

xt+1 = (xt + at − ξt)+, t = 0, 1, ..., (52)

x0 = x given, with state space X = [0,∞) and actions set A(x) = A for
every x ∈ X, where A is a compact subset of some interval (0, θ], with
θ ∈ A.

Equations (52) describe, in particular, the model of a single server
queueing system of type GI/D/1/∞ with controlled service rates at ∈
A. In this case xt denotes the waiting time of the t−th customer, while
ξt denotes the interarrival time between the t−th and the (t + 1)−th
customers.
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The random variables ξ0, ξ1, ..., are supposed to be i.i.d. with un-
known density ρ ∈ Lq(<) satisfying the inequality

‖4zρ‖Lq
≤ L |z|1/q ,

for some given constants L < ∞, q > 1; or the hypotheses mentioned
in Remark 3.2.

The following assumption ensures ergodicity of the system when
using the slowest services: at = θ, t ≥ 0.

Assumption 6.1. E(ξ0) exist, and moreover E(ξ0) > θ.

Considering the function Ψ(s) := eθsE(e−sξ0) we find that Assump-
tion 6.1 implies Ψ′(0) < 0, and so there is λ > 0 for which Ψ(λ) < 1.
Also, by continuity of Ψ we can choose p > 1 such that

Ψ(pλ) := β0 < 1. (53)

Let us set W (x) =b eλx, for all x ∈ [0,∞), where b is an arbitrary
positive constant. Easy calculations shows that ϕ(s) = max{1, eλ(θ−s)} <
∞ for every s ∈ [0,∞) [see definition of ϕ in (7)]. Therefore, to satisfy
Assumption 2.3 we can take, for example,

ρ (s) := M min{1, 1/s1+r}, (54)

for all s ∈ [0,∞), where r > 0.

For r < 1 and choosing enough large M in (54), Assumption 6.1
implies ρ ≤ρ in a wide class of densities (see conditions (c) and (a) in
Definitions 3.1 and 5.1, respectively).

On the other hand, in [6] were taken advantages of (53) and defini-
tion ψf (x) := P [x + f(x) − ξ0 ≤ 0], f ∈IF, to verify, for this example,
the conditions (b) and (c) in Definition 5.1. Thus, we have ρ ∈ D′0, and
according to Remark 5.2(b), also ρ ∈ D0.

Finally, to meet Assumption 2.1, the one-stage cost c(x, a) can be
chosen as any nonnegative measurable function which is l.s.c. in a and
satisfying

sup
A
c(x, a) ≤b eλx, for all x ∈ [0,∞).
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7 Concluding remarks

It is well-known that α− optimal and AC− optimal stationary policies
exist if the minimum on the right-hand side of (11) and (33) is attained
for each x ∈ X, respectively. Thus, to guarantee the existence of such
policies it is necessary to impose rather restrictive continuity conditions
on the one-stage cost c and the transition probability of the process,
as well as compactness of the sets A(x) (see, e.g., [10], pp. 18, 53).
Hence, it can happen that under the assumptions made in this paper,
stationary policies for the discounted and average criteria do not exist
for the process (1) with a known density ρ, while Theorems 4.4 and
5.7 guarantee the existence of, respectively, asymptotically discounted
optimal and average cost optimal adaptive policies. The latter theorems
thus extend previous results in that they give conditions for the existence
of ε-optimal policies with ε = δ∗ and ε = δ in Theorems 4.4 and 5.7,
respectively.
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aminjare@gauss.mat.uson.mx

References

[1] D.P. Bertsekas and S.E. Shreve, Stochastic Optimal Control: The
Discrete Time Case, Academic Press, New York, 1978.

[2] D. Blackwell, Discrete dynamic programming, Ann. Math.
Statist., 33 (1962), 719-726.



64 J. ADOLFO MINJÁREZ-SOSA
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