Morfismos, Vol. 3, No. 1, 1999, pp. 35-40

EACH COPY OF THE REAL LINE IN \mathbb{C}^2 IS REMOVABLE

EDUARDO SANTILLÁN ZERÓN¹

Abstract

In 1994, Professors E.M. Chirka, E.L. Stout and G. Lupacciolu showed that a closed subset of \mathbb{C}^n $(n \geq 2)$ is removable for holomorphic functions, if its cover dimension is less than or equal to n-2. Besides, they asked whether closed subsets of \mathbb{C}^2 homeomorphic to the real line (the simplest 1-dimensional sets) are removable for holomorphic functions. In this paper we propose a positive answer to that question.

1991 Mathematics Subject Classification: 32D20.

1 Introduction

In 1994, professors E.M. Chirka, E.L. Stout and G. Lupacciolu showed that a closed subset X of \mathbb{C}^n $(n \geq 2)$ is removable for holomorphic functions, if the cover dimension of X is less than or equal to n-2 (see [1], [4] and [5]). That is, each holomorphic function defined on $\mathbb{C}^n - X$ has got a holomorphic extension on \mathbb{C}^n . Besides, they asked whether closed subsets of \mathbb{C}^2 homeomorphic to the real line (the simplest 1dimensional sets) are removable for holomorphic functions. We propose answering positively that question by showing the following:

MAIN PROPOSITION. Let X be a closed subset of \mathbb{C}^2 homeomorphic to the real line, then X is removable for holomorphic functions in \mathbb{C}^2 .

REMARKS: The real line \mathbb{R} is endowed with the standard topology. **Arcs** are spaces homeomorphic to the closed interval $[0,1] \subset \mathbb{R}$ (see [2, p. 59]). The topology of \mathbb{C}^2 is generated by the standard norm $\|\cdot\|$.

¹Associate Professor, Departamento de Matemáticas del CINVESTAV.

EDUARDO SANTILLÁN

Proof. Let f be a holomorphic function defined on $\mathbb{C}^2 - X$, and let x be an arbitrary point of X. We will show that f extends holomorphically over x by applying Theorem II.7 of [6]: Let \mathcal{M} be a Stein manifold of dimension n ($n \geq 2$) and let W be a relatively compact domain in \mathcal{M} with boundary $\delta W = E \cup \Gamma$ where Γ is a connected \mathcal{C}^1 submanifold of $\mathcal{M} - E$ and E is a compact set. If the $\mathcal{O}(\mathcal{M})$ -convex hull of E meets \overline{W} only in the set E, then E is removable.

Since X is homeomorphic to the real line, there exists an arc $H \subset X$ such that $x \in H$, but x is not an end-point of H. Note that H has got exactly two end-points, named a and b. We can assume, without loss of generality, that $||a - b|| \ge 3$ (recall that X is neither compact nor bounded). Set $E = \{a, b\}$ and $H^{\diamond} = H - E$. It is easy to see that H^{\diamond} is homeomorphic to $I\!R$ and is an open subset of X. Whence, there exists an open subset $U \subset \mathbb{C}^2$ such that $H^{\diamond} = X \cap U$, because X is a subspace of \mathbb{C}^2 (see [2, p. 22]).

The arc H is closed and bounded in \mathbb{C}^2 because it is compact; so can we demand the open set U to be bounded as well. Therefore, the closure \overline{U} and boundary $\delta U = \overline{U} - U$ are both compact sets; each closure, interior and/or boundary is calculated with respect to \mathbb{C}^2 (see [3, pp. 69-72]). We are now going to build (by induction) an open neighborhood $V \subset \mathbb{C}^2$ of H^{\diamond} which boundary $\delta V \cap X \subset E$ and $\delta V - E$ is a \mathbb{C}^2 -smooth manifold (it may not be connected).

For every positive integer k, let $B_k(z) \subset \mathbb{C}^2$ be the open ball of radius 1/k and center in $z \in \mathbb{C}^2$, and let $B_k(E) = B_k(a) \cup B_k(b)$ be open in \mathbb{C}^2 . Besides, consider the compact set $H_k = H - B_k(E)$ (it is closed and bounded). The following facts are satisfied:

- i) $E \subset B_m(E) \subset B_k(E)$ for all integers $m \ge k > 0$.
- ii) The sequence $B_k(E)$ converges to E when $k \to \infty$ (see page 471 in [2]).
- iii) $H_k \subset H_m \subset H^\diamond \subset U$ for all $m \ge k > 0$ by point (i).
- iv) The sequence H_k converges to H when $k \to \infty$.

Each H_k is non-empty because the distance between the end-points of H is $||a - b|| \ge 3$, and the radius of the balls $B_k(a)$ and $B_k(b)$ is $1/k \le 1$. From point (iii) above: $H_k \cap \delta U = H_k \cap \overline{U} - U = \emptyset$. The distance between H_k and δU is then greater than zero because they are both compact sets (see [2, p. 84]). That is, there exists a real number $\beta > 0$ such that $||s - t|| > \beta$ for all $s \in H_k$ and $t \in \delta U$. Hence, there exist open sets $V_k \subset \mathbb{C}^2$ such that:

- **v**) $H_k \subset V_k \subset \overline{V_k} \subset U$ for every integer k > 0.
- vi) The boundary $\delta V_k = \overline{V_k} V_k$ is a C^2 -smooth 3-manifold.

Moreover, we are going to choose the sets V_k inductively. From fact (iii), we have got that $H_k = H_{k+1} - B_k(E)$. That is, the sets H_{k+1} and H_k are equal outside $B_k(E)$, so can we ask $\overline{V_{k+1}}$ and $\overline{V_k}$ to be equal outside $B_k(E)$ as well. Fix $\overline{V_1} \subset U$ and demand that $\overline{V_{k+1}} - B_k(E) = \overline{V_k} - B_k(E)$ holds for every integer k > 0. We then deduce that $\overline{V_m} - B_k(E) = \overline{V_k} - B_k(E)$ holds for all integers $m \ge k > 0$, by point (i).

Therefore, from statement (ii), the sequence $\overline{V_k}$ converges to a compact set $\widetilde{V} \subset \mathbb{C}^2$ when $k \to \infty$. Indeed: $\widetilde{V} - B_k(E) = \overline{V_k} - B_k(E)$ for each k > 0. Observe that \widetilde{V} is closed (see [2, p. 471]) and bounded in \mathbb{C}^2 (recall that each $\overline{V_k} \subset U$ where U is bounded). Now let $V \subset \mathbb{C}^2$ be the interior set of \widetilde{V} . The following equalities follows from fact (vi):

vii) $\delta V - B_k(E) = \delta V_k - B_k(E) = \delta \widetilde{V} - B_k(E).$ viii) $V - B_k(E) = V_k - B_k(E).$

We have got that $H^{\diamond} \subset V$. Indeed, let $w \in H^{\diamond}$ be an arbitrary point. There exists an integer $\mu > 0$ such that $w \in H_{\mu}$ by points (iii) and (iv); besides: $H_{\mu} = H - B_{\mu}(E) \subset V_{\mu} - B_{\mu}(E) \subset V$ (see (v) and (viii)). On the other hand, the set $P = X \cap (\delta V - B_m(E))$ is empty for every integer m > 0.

From (v), (vi) and (vii):	$P = X \cap (\delta V_m - B_m(E)) \subset U.$
Since $H^{\diamond} = U \cap X$:	$P = H^{\diamond} \cap (\delta V_m - B_m(E)).$
Since $H^\diamond \subset H$:	$P \subset (H - B_m(E)) \cap \delta V_m = H_m \cap \delta V_m.$
From (v) and (vi):	$P \subset (H_m \cap \overline{V_m}) - V_m = \emptyset.$

Moreover: $P = (X \cap \delta V) - B_m(E)$. Whence, the inclusion $X \cap \delta V \subset B_m(E)$ holds for each m > 0; and so: $X \cap \delta V \subset E$ by facts (i) and (ii). Finally, we deduce that $\delta V - E$ is a C^2 -smooth 3-manifold by using facts (ii), (vi) and (vii). The point $x \in H^{\diamond}$ has then got a compactly contained open neighborhood $V \subset C^2$ with the desired boundary. However, the sets V and/or $\delta V - E$ may not be connected. In order to solve this problem we proceed as follows.

Consider W_1 to be the connected component of V which contains to H^{\diamond} (recall that H^{\diamond} is connected). Since \mathbb{C}^2 is locally connected, we have got that $W_1 \subset \mathbb{C}^2$ is open and $\delta W_1 \subset \delta V$ (see [3, pp. 113 and 118]). Hence, the set W_1 is open, connected and compactly contained in \mathbb{C}^2 ; moreover: $x \in W_1$, its boundary $\delta W_1 \cap X \subset E$ and $\delta W_1 - E$ is a \mathbb{C}^2 -smooth 3-dimensional manifold. A picture of $\overline{W_1}$ could be the following:

$$\overline{W_1} = \bullet^a \bigcirc \bullet^x \bigcirc^b$$

Now let W_2 be the only *unbounded* connected component of $\mathbb{C}^2 - \overline{W_1}$ (recall that $\overline{W_1}$ is compact and see [3, p. 356]), and let $W_3 = \mathbb{C}^2 - \overline{W_2}$ be open. The set $W_2 \subset \mathbb{C}^2$ is open by the locally connectedness. Besides:

- $\delta W_2 \subset \overline{W_1} W_1 = \delta W_1$, because W_1 is open and [3, p. 356]. ix)
- **x**) $\overline{W_3} = C^2 W_2$ is compact (bounded). **xi**) $\overline{W_2} \cup \overline{W_3} = C^2$ and $\overline{W_2} \cap \overline{W_3} = \delta W_2 = \delta W_3$.

Note that $x \in W_1 \subset W_3$. On the other hand, let D be a connected component of W_3 . It is easy to see that δD is not a finite set, so can we pick up a point $w \in \delta D - E$. From [3, p. 118] and statements (ix) and (xi), we have got that $\delta D \subset \delta W_3 = \delta W_2 \subset \delta W_1$. Whence, there exists an integer $\mu > 0$ such that $B_{\mu}(w) \cap \delta W_1$ is diffeomorphic to \mathbb{R}^3 (recall that $\delta W_1 - E$ is \mathcal{C}^2 -smooth); and so $B_\mu(w) - \delta W_1$ consists of exactly two connected components.

Furthermore, one connected component of $B_{\mu}(w) - \delta W_1$ is contained in W_2 (recall that $w \in \delta W_2$) and the other component must be contained in both D and W_1 (because D and W_1 are both contained in $\mathbb{C}^2 - W_2$). Therefore: $D \cap W_1 \neq \emptyset$. That is, the connected set W_1 is contained in W_3 and meets to every connected component of W_3 ; so is W_3 a connected compactly contained open set of \mathbb{C}^2 (see (x)).

We know that $\delta W_3 \subset \delta W_1$. Hence: $\delta W_3 \cap X \subset E$ and $\delta W_3 - E$ is a \mathcal{C}^2 -smooth 3-manifold. Actually, the equality $\delta W_3 \cap X = E$ holds, but we do not use it in this proof. Recall that $W_2 = \mathbb{C}^2 - \overline{W_3}$ is connected, so are $\overline{W_2}$ and $\overline{W_3}$ (see [3, p. 109]). Since \mathbb{C}^2 is unicoherent (see [2, p. 397]) and point (xi), the boundary δW_3 is connected. Reasoning in a similar way and using the fact that $C^2 - E$ is unicoherent (recall that E consists of only two points), we deduce that $\delta W_3 - E = \overline{W_2} \cap \overline{W_3} \cap (\mathbb{C}^2 - E)$ is connected as well.

Finally, observe that the function f is holomorphic on $\delta W_3 - E$ (because f is holomorphic outside X). Applying Theorem 3 of [4] or Theorem II.7 of [6], we conclude that f can be holomorphically extended over $x \in W_3$. The function f has then got a holomorphic extension on \mathbb{C}^2 because the point $x \in X$ was chosen arbitrarily.

Moreover, let \mathcal{M} be a connected complex manifold of dimension two. Each closed subset $X \subset \mathcal{M}$ homeomorphic to the real line is removable. Let f be a holomorphic function defined on $\mathcal{M} - X$, and let $x \in X$ be an arbitrary point. It easy to see that there exists a biholomorphism g

from the open unit ball $B_1(0) \subset \mathbb{C}^2$ onto a neighborhood of x, such that g(0) = x. Since $B_1(0)$ is homeomorphic to \mathbb{C}^2 , we can build an open set $W_3 \subset B_1(0)$ such that $0 \in W_3$, its boundary δW_3 meets X in at most two points and satisfies the hypothesis of Theorem 3 of [4]. Thus, the function $f \circ g$ extends holomorphically over 0 (inside $B_1(0)$); and so f extends holomorphically over x as well.

However, in order to show that every closed set homeomorphic to \mathbb{R}^{n-1} is removable in \mathbb{C}^n $(n \geq 3)$, we firstly need to prove that the topological copies of sphere \mathcal{S}^{n-2} are removable for the boundary in \mathbb{C}^n . We have strongly used the fact that \mathcal{S}^0 contains just two points (it is holomorphically convex).

Acknowledgement

The author wishes to thank to University of Toronto, York University and Cinvestav-IPN for the library and computer facilities.

> R. Eduardo Santillán Z. Departamento de Matemáticas, Cinvestav. Apartado Postal 14-740, México 07360, D.F. eszeron@math.cinvestav.mx

References

- E. M. Chirka and E. L. Stout, *Removable singularities in the boundary*, Contributions to complex analysis and analytic geometry 104– 430. Aspects Math., E 26, Vieweg, (Braunschweig, 1994).
- [2] C. O. Chisterson and W. L. Voxman, Aspects of topology, Marcel Dekker (New York, 1977).
- [3] J. Dugundji, *Topology*, Allyn and Bacon (Boston, 1966).
- [4] G. Lupacciolu, Characterization of removable sets in strongly pseudoconvex boundaries, Ark. Mat. 32 (1994), 455-473.
- [5] A. R. Pears, *Dimension theory of general spaces*, Cambridge University Press (Cambridge, 1975).

EDUARDO SANTILLÁN

[6] E. L. Stout, Removable singularities for the boundary values of holomorphic functions, Several complex variables: Proceedings of the Mittag-Leffer institute, 600–629 (1987-1988). Princeton University Press (Princeton, 1993).