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EACH COPY OF THE REAL LINE

IN C2 IS REMOVABLE

EDUARDO SANTILLÁN ZERÓN 1

Abstract

In 1994, Professors E.M. Chirka, E.L. Stout and G. Lupacciolu
showed that a closed subset of Cn (n ≥ 2) is removable for holo-
morphic functions, if its cover dimension is less than or equal to
n − 2. Besides, they asked whether closed subsets of C2 home-
omorphic to the real line (the simplest 1-dimensional sets) are
removable for holomorphic functions. In this paper we propose a
positive answer to that question.

1991 Mathematics Subject Classification: 32D20.

1 Introduction

In 1994, professors E.M. Chirka, E.L. Stout and G. Lupacciolu showed
that a closed subset X of Cn (n ≥ 2) is removable for holomorphic
functions, if the cover dimension of X is less than or equal to n− 2 (see
[1], [4] and [5]). That is, each holomorphic function defined on Cn −X
has got a holomorphic extension on Cn. Besides, they asked whether
closed subsets of C2 homeomorphic to the real line (the simplest 1-
dimensional sets) are removable for holomorphic functions. We propose
answering positively that question by showing the following:

Main Proposition. Let X be a closed subset of C2 homeomorphic
to the real line, then X is removable for holomorphic functions in C2.

Remarks: The real line IR is endowed with the standard topology.
Arcs are spaces homeomorphic to the closed interval [0, 1] ⊂ IR (see
[2, p. 59]). The topology of C2 is generated by the standard norm ‖ · ‖.
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Proof. Let f be a holomorphic function defined on C2−X, and let x
be an arbitrary point ofX. We will show that f extends holomorphically
over x by applying Theorem II.7 of [6]: Let M be a Stein manifold of
dimension n (n ≥ 2) and let W be a relatively compact domain in M
with boundary δW = E ∪ Γ where Γ is a connected C1 submanifold of
M− E and E is a compact set. If the O(M)-convex hull of E meets
W only in the set E, then E is removable.

Since X is homeomorphic to the real line, there exists an arc H ⊂ X
such that x ∈ H, but x is not an end-point of H. Note that H has got
exactly two end-points, named a and b. We can assume, without loss
of generality, that ‖a − b‖ ≥ 3 (recall that X is neither compact nor
bounded). Set E = {a, b} and H� = H −E. It is easy to see that H� is
homeomorphic to IR and is an open subset of X. Whence, there exists
an open subset U ⊂ C2 such that H� = X ∩U , because X is a subspace
of C2 (see [2, p. 22]).

The arc H is closed and bounded in C2 because it is compact; so
can we demand the open set U to be bounded as well. Therefore, the
closure U and boundary δU = U−U are both compact sets; each closure,
interior and/or boundary is calculated with respect to C2 (see [3, pp. 69-
72]). We are now going to build (by induction) an open neighborhood
V ⊂ C2 of H� which boundary δV ∩X ⊂ E and δV −E is a C2-smooth
manifold (it may not be connected).

For every positive integer k, let Bk(z) ⊂ C2 be the open ball of
radius 1/k and center in z ∈ C2, and let Bk(E) = Bk(a) ∪ Bk(b) be
open in C2. Besides, consider the compact set Hk = H − Bk(E) (it is
closed and bounded). The following facts are satisfied:

i) E ⊂ Bm(E) ⊂ Bk(E) for all integers m ≥ k > 0.
ii) The sequence Bk(E) converges to E when k →∞ (see page

471 in [2]).
iii) Hk ⊂ Hm ⊂ H� ⊂ U for all m ≥ k > 0 by point (i).
iv) The sequence Hk converges to H when k →∞.

Each Hk is non-empty because the distance between the end-points
of H is ‖a − b‖ ≥ 3, and the radius of the balls Bk(a) and Bk(b) is
1/k ≤ 1. From point (iii) above: Hk ∩ δU = Hk ∩ U − U = ∅. The
distance between Hk and δU is then greater than zero because they are
both compact sets (see [2, p. 84]). That is, there exists a real number
β > 0 such that ‖s − t‖ > β for all s ∈ Hk and t ∈ δU . Hence, there
exist open sets Vk ⊂ C2 such that:
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v) Hk ⊂ Vk ⊂ Vk ⊂ U for every integer k > 0.

vi) The boundary δVk = Vk − Vk is a C2-smooth 3-manifold.

Moreover, we are going to choose the sets Vk inductively. From fact
(iii), we have got that Hk = Hk+1 − Bk(E). That is, the sets Hk+1

and Hk are equal outside Bk(E), so can we ask Vk+1 and Vk to be
equal outside Bk(E) as well. Fix V1 ⊂ U and demand that Vk+1 −
Bk(E) = Vk − Bk(E) holds for every integer k > 0. We then deduce
that Vm − Bk(E) = Vk − Bk(E) holds for all integers m ≥ k > 0, by
point (i).

Therefore, from statement (ii), the sequence Vk converges to a com-
pact set Ṽ ⊂ C2 when k → ∞. Indeed: Ṽ − Bk(E) = Vk − Bk(E) for
each k > 0. Observe that Ṽ is closed (see [2, p. 471]) and bounded in
C2 (recall that each Vk ⊂ U where U is bounded). Now let V ⊂ C2 be
the interior set of Ṽ . The following equalities follows from fact (vi):

vii) δV −Bk(E) = δVk −Bk(E) = δṼ −Bk(E).
viii) V −Bk(E) = Vk −Bk(E).

We have got that H� ⊂ V . Indeed, let w ∈ H� be an arbitrary point.
There exists an integer µ > 0 such that w ∈ Hµ by points (iii) and (iv);
besides: Hµ = H − Bµ(E) ⊂ Vµ − Bµ(E) ⊂ V (see (v) and (viii)).
On the other hand, the set P = X ∩ (δV − Bm(E)) is empty for every
integer m > 0.

From (v), (vi) and (vii): P = X ∩ (δVm −Bm(E)) ⊂ U .
Since H� = U ∩X: P = H� ∩ (δVm −Bm(E)).
Since H� ⊂ H: P ⊂ (H −Bm(E)) ∩ δVm = Hm ∩ δVm.

From (v) and (vi): P ⊂ (Hm ∩ Vm)− Vm = ∅.
Moreover: P = (X∩δV )−Bm(E). Whence, the inclusion X∩δV ⊂

Bm(E) holds for each m > 0; and so: X ∩ δV ⊂ E by facts (i) and (ii).
Finally, we deduce that δV −E is a C2-smooth 3-manifold by using facts
(ii), (vi) and (vii). The point x ∈ H� has then got a compactly contained
open neighborhood V ⊂ C2 with the desired boundary. However, the
sets V and/or δV − E may not be connected. In order to solve this
problem we proceed as follows.

Consider W1 to be the connected component of V which contains to
H� (recall that H� is connected). Since C2 is locally connected, we have
got that W1 ⊂ C2 is open and δW1 ⊂ δV (see [3, pp. 113 and 118]).
Hence, the set W1 is open, connected and compactly contained in C2;
moreover: x ∈ W1, its boundary δW1 ∩ X ⊂ E and δW1 − E is a C2-
smooth 3-dimensional manifold. A picture of W1 could be the following:
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Now let W2 be the only unbounded connected component of C2−W1

(recall that W1 is compact and see [3, p. 356]), and let W3 = C2−W2 be
open. The set W2 ⊂ C2 is open by the locally connectedness. Besides:

ix) δW2 ⊂W1 −W1 = δW1, because W1 is open and [3, p. 356].

x) W3 = C2 −W2 is compact (bounded).

xi) W2 ∪W3 = C2 and W2 ∩W3 = δW2 = δW3.

Note that x ∈ W1 ⊂ W3. On the other hand, let D be a connected
component of W3. It is easy to see that δD is not a finite set, so can we
pick up a point w ∈ δD − E. From [3, p. 118] and statements (ix) and
(xi), we have got that δD ⊂ δW3 = δW2 ⊂ δW1. Whence, there exists
an integer µ > 0 such that Bµ(w) ∩ δW1 is diffeomorphic to IR3 (recall
that δW1 − E is C2-smooth); and so Bµ(w) − δW1 consists of exactly
two connected components.

Furthermore, one connected component of Bµ(w)−δW1 is contained
in W2 (recall that w ∈ δW2) and the other component must be contained
in both D and W1 (because D and W1 are both contained in C2−W2).
Therefore: D∩W1 6= ∅. That is, the connected set W1 is contained in W3

and meets to every connected component of W3; so is W3 a connected
compactly contained open set of C2 (see (x)).

We know that δW3 ⊂ δW1. Hence: δW3 ∩X ⊂ E and δW3 −E is a
C2-smooth 3-manifold. Actually, the equality δW3 ∩X = E holds, but
we do not use it in this proof. Recall that W2 = C2−W3 is connected, so
are W2 and W3 (see [3, p. 109]). Since C2 is unicoherent (see [2, p, 397])
and point (xi), the boundary δW3 is connected. Reasoning in a similar
way and using the fact that C2−E is unicoherent (recall that E consists
of only two points), we deduce that δW3 −E = W2 ∩W3 ∩ (C2 −E) is
connected as well.

Finally, observe that the function f is holomorphic on δW3 − E
(because f is holomorphic outside X). Applying Theorem 3 of [4] or
Theorem II.7 of [6], we conclude that f can be holomorphically extended
over x ∈ W3. The function f has then got a holomorphic extension on
C2 because the point x ∈ X was chosen arbitrarily.

Moreover, letM be a connected complex manifold of dimension two.
Each closed subset X ⊂M homeomorphic to the real line is removable.
Let f be a holomorphic function defined on M−X, and let x ∈ X be
an arbitrary point. It easy to see that there exists a biholomorphism g
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from the open unit ball B1(0) ⊂ C2 onto a neighborhood of x, such that
g(0) = x. Since B1(0) is homeomorphic to C2, we can build an open set
W3 ⊂ B1(0) such that 0 ∈ W3, its boundary δW3 meets X in at most
two points and satisfies the hypothesis of Theorem 3 of [4]. Thus, the
function f ◦ g extends holomorphically over 0 (inside B1(0)); and so f
extends holomorphically over x as well.

However, in order to show that every closed set homeomorphic to
IRn−1 is removable in Cn (n ≥ 3), we firstly need to prove that the
topological copies of sphere Sn−2 are removable for the boundary in
Cn. We have strongly used the fact that S0 contains just two points (it
is holomorphically convex).
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