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A DIRECT APPROACH TO

BLACKWELL OPTIMALITY ∗

ROLANDO CAVAZOS–CADENA 1 JEAN B. LASSERRE 2

Abstract

This work concerns discrete-time Markov decision processes (MDP’s)
with denumerable state space and bounded rewards. The main ob-
jective is to show that the problem of establishing the existence of
Blackwell optimal polices can be approached via well-known tech-
niques in the theory of MDP’s endowed with the average reward
criterion. The main result can be summarized as follows: Assum-
ing that the Simultaneous Doeblin Condition and mild continuity
conditions are satisfied, it is shown that a policy π∗ is Blackwell
optimal if, and only if, the actions prescribed by π∗ maximize
the right–hand side of the average reward optimality equations
associated to a suitably defined sequence of MDP’s. In contrast
with the usual approach, this result is obtained by using standard
techniques and does not involve Laurent series expansions.
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1 Introduction

This work concerns Markov decision processes (MDP’s) with denumer-
able state space, discrete time parameter and bounded rewards. When
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the decision horizon is infinite, there are two criteria that are widely
used for measuring the performance of a control policy, namely, the
total expected discounted reward and the long-run expected average re-
ward criteria. In a certain sense, the former emphasizes the behavior
of the policy in the early stages, since, due to the presence of the dis-
count factor, the contribution to the criterion coming from the rewards
obtained in large decision epochs decays geometrically to zero. On the
other hand, the average criterion depends only on the asymptotic behav-
ior of the rewards, but not on those obtained ‘during the first milenium’
[9]. To balance this situation, other criteria considering both the early
and the asymptotic behavior of a control policy have been introduced
as, for instance, strong average optimality and what is presently known
as Blackwell optimality; the latter notion was introduced by Blackwell
in [1] under the name of 1-optimality and it is the main object of inter-
est in this note. These and other ‘sensitive’ criteria have been recently
considered in the literature; see, for instance, [2, 6, 8–10, 13–15] and
the references therein. On the other hand, the Blackwell optimality cri-
terion has been studied—mainly—by using Laurent series expansions
for α-discounted rewards around α = 1. This approach was firstly used
by Veinott [21] and Miller and Veinott [18] for finite MDP’s and has
been extended to more general frameworks; see Dekker and Hordijk [6],
Yushkevich [22], and their references. Also, a different way to study
Blackwell optimality via functional analysis techniques was introduced
in [15].

The main objective of this note is to present a simple approach
to establish the existence of Blackwell optimal polices, which is based
upon familiar techniques employed in the study of MDP’s endowed with
the average reward criterion. In fact, the main result in this note,
stated below in Theorem 3.1, can be roughly described as follows: A
policy π∗ is Blackwell optimal if and only if the actions prescribed by π∗

maximize the right-hand side of the average reward optimality equations
associated to a suitably defined sequence of MDP’s. Therefore, the
construction of Blackwell optimal polices reduces to solve a sequence of
MDP’s endowed with the average reward criterion. In addition, a simple
condition guaranting the uniqueness of a Blackwell optimal policy is
presented in Theorem 5.1. These results are obtained by assuming that
the decision model satisfies the Simultaneous Doeblin Condition as well
as standard continuity requirements. The proofs extend the ideas used
in [2] to study strong 1-optimal policies.
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The organization of the paper is as follows: In Section 2 the decision
model is formally described and the discounted, average and Blackwell
optimality criteria are introduced. Next, in Section 3 the main result
is stated in the form of Theorem 3.1, which is proved in Section 5 after
the necessary preliminaries presented in Section 4. Finally, the paper
concludes in Section 6 with some brief comments.

Notation. As usual IR stands for the set of the real numbers while IN :=
{0, 1, 2, · · ·}. Given a topological space IK, the space IB(IK) consists all
functions r : IK→ IR which are continuous and bounded, i.e.,

‖r‖ := sup
k∈IK
|r(k)| <∞.

On the other hand, a cartesian product of topological spaces is always
endowed with the corresponding product topology.

2 The Model

Let M := (S,C, {C(x)}, r, p) be the usual MDP where the state space
S is a denumerable set endowed with the discrete topology, and the
metric space C is the control set. For each x ∈ S, C(x) ⊂ C is the
nonempty and compact set of admissible actions at state x, while the
set of admissible state-action pairs is given by IK := {(x, a)|x ∈ S, a ∈
C(x)}, which is considered as a topological subspace of S × C. On the
other hand, r ∈ IB(IK) is the reward function and p is the transition
law. The interpretation of the model is as follows: At each time t ∈ IN
the state of the system is observed, say Xt = x ∈ S, and an action
At = a ∈ C(x) is chosen. Then, a reward r(x, a) is obtained and,
regardless of the previous states and actions, the state of the system at
time t+1 will be Xt+1 = y with probability pxy(a), where

∑
y pxy(a) = 1;

this is the Markov property of the decision process.

Assumption 2.1 For each x, y ∈ S, the mapping a 7→ pxy(a), a ∈
C(x), is continuous.

Policies. A policy is a (possibly randomized) rule for choosing actions
which may depend on the current state and on the record of previous
states and actions; see [11, pp. 1–4] for a detailed description. The
class of all policies is denoted by IP and, given the initial state X0 = x
and the policy π ∈ IP being used, the distribution of the state-action
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process {(Xt, At)} is uniquely determined; it is denoted by P πx , whereas
Eπx stands for the corresponding expectation operator. Next, set IF :=
Πx∈SC(x), that is, IF is the set of all (choice) functions f : S → C such
that f(x) ∈ C(x) for all x ∈ S. A policy π ∈ IP is stationary if there
exists f ∈ IF such that, when the system is in progress under π, action
f(x) is applied when Xt = x regardless of the time t ∈ IN; the class
of all stationary policies is naturally identified with IF. Finally, observe
that under the action of any stationary policy f ∈ IF, the state process
{Xt} is a Markov chain with stationary transition mechanism [11, 19].

Performance Criteria. Let x ∈ S and π ∈ IP be arbitrary.

(a) For each α ∈ (0, 1), the total expected α-discounted reward asso-
ciated to the reward function r at state x under policy π is defined
by

Vα(π; r;x) := Eπx [
∞∑
t=0

αtr(Xt, At)]; (2.1)

notice that

‖Vα(π; r; ·)‖ ≤ ‖r‖/(1− α). (2.2)

(b) A policy π∗ is Blackwell optimal at x ∈ S if for each π ∈ IP there
exists α(π∗, π;x) ∈ (0, 1) such that

Vα(π∗; r;x)− Vα(π; r;x) ≥ 0 for all α ∈ (α(π∗, π;x), 1). (2.3)

The policy π∗ is Blackwell optimal (BO) if it is Blackwell optimal at
each x ∈ S.

Observe that the notion of Blackwell optimal policy is expressed in
terms of the behavior of the (expected) α-discounted rewards for α close
to 1. On the other hand, it is known ([1–6, 8–11, . . . ]) that the limiting
behavior of the α-discounted rewards as α increases to 1 is closely related
to the average reward criterion (introduced below). Therefore, it is
interesting to investigate the possibility of studying Blackwell optimality
via the familiar techniques employed in the analysis of the average case.
As already mentioned in Section 1, the main objective of this note is
to show that BO policies can be determined by finding the optimizing
actions in each of the average reward optimality equations (AROE ’s)
associated to an appropiate sequence of MDP’s ; this result is stated
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precisely as Theorem 3.1 in Section 3. First, the necessary notions and
assumptions are introduced.

(c) The (lim sup expected) average reward at state x ∈ S under policy
π ∈ IP corresponding to the reward function r ∈ IB(IK) is given by

J(π; r;x) := lim sup
n→∞

1

n+ 1
Eπx [

n∑
t=0

r(Xt, At)], (2.4)

whereas

J(r;x) := sup
π∈IP

J(π; r;x) (2.5)

is the optimal average reward at x associated to r. A policy π̃ is average
optimal (AO) for the reward function r if J(π̃; r;x) = J(r;x) for all
x ∈ S.

Assumption 2.2 There exists K ∈ (0,∞) with the following property:
For each f ∈ IF there exists z(f) ∈ S satisfying

Efx [Tz(f)] ≤ K for all x ∈ S,

where Tz(f) := min{t > 0|Xt = z(f)}, and the (usual) convention that
the minimum of the empty set is ∞ is enforced.

This assumption is a version of the Simultaneous Doeblin Condition
[20] and, under certain conditions [3–5], it is necessary and sufficient for
the existence of bounded solutions to the AROE for arbitrary r ∈ IB(IK);
see (2.6) below.

Lemma 2.1 Suppose that Assumptions 2.1 and 2.2 hold. Then, for
each r ∈ IB(IK), there exists gr ∈ IR and hr ∈ IB(S) such that (i)–(iv)
below occur:

(i) gr = J(r;x) for all x ∈ S.

(ii) ‖hr‖ ≤ B‖r‖, where B := 2K and K is as in Assumption 2.2.

(iii) gr and hr satisfy the AROE corresponding to M = (S,C, {C(x)}, r, p),
i.e.,

gr − hr(x) = sup
a∈C(x)

[r(x, a)−
∑
y

pxy(a)hr(y)], x ∈ S. (2.6)
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(iv) For each x ∈ S the term within brackets in the right–hand side of
(2.6)—considered as a function of a ∈ C(x)—has a maximizer f(x) ∈
C(x); moreover, the corresponding policy f ∈ IF is AO for the reward
function r.

For a proof see, for instance, [5,11,19].

Remark 2.1 (i) The notation in (2.6) differs slightly from the usual
one: −hr in the previous lemma is usually written as hr.

(ii) Let M ′ = (S,C, {C ′(x)}, r′, p) be an MDP such that C ′(x) ⊂ C(x)
and C ′(x) is nonempty and compact for each x ∈ S. The set IF′ :=
Πx∈SC

′(x) of stationary policies associated to M ′ is clearly contained
in IF, so that Assumption 2.2 is satisfied when IF is replaced by IF′. This
implies that Lemma 2.1 remains valid for the model M ′; of course, it is
assumed that r′ ∈ IB(IK′), where IK′ := {(x, a)|x ∈ S, a ∈ C ′(x)} is a
topological subspace of S × C.

The following lemma refers to the ergodic properties of the Markov
chains induced by stationary policies; part (iv) will be used in the proof
of Theorem 4.1 of Section 4.

Lemma 2.2 Under Assumptions 2.1 and 2.2, (i)–(iv) below occur.

(i) For each stationary policy f ∈ IF the Markov chain induced by f has
an invariant distribution qf , that is, qf : S → [0, 1] satisfies

qf (y) =
∑
x

qf (x)pxy(f(x)), y ∈ S, and
∑
y

qf (y) = 1.

(ii) For each r ∈ IB(IK), f ∈ IF and x ∈ S,

lim
n→∞

1

n+ 1
Efx [

n∑
t=0

r(Xt, At)] =
∑
y

qf (y)r(y, f(y)) = J(f ; r;x).

(iii) The collection {qf |f ∈ IF} is tight, that is, given ε > 0 there exists
a finite set G ⊂ S such that ∑

y∈S\G
qf (y) < ε.
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(iv) For each finite set F ⊂ S let IF be the indicator function of F , i.e.,
IF (x) := 1 (resp. 0) if x ∈ F (resp. x ∈ S \ F ); notice that IF ∈ IB(S)
and that IB(S) can be (naturally) considered as a subspace of IB(IK).
Now let G ⊂ S be a finite set. Then, for each x ∈ S,

J(IS\G;x)→ 0 as G↗ S;

see (2.4) and (2.5).

Part (i) of this lemma follows from [16, Ch. 3], while part (ii) can
be obtained from the theory of renewal-reward processes in [19, Ch. 3].
A proof of part (iii) can be found, for instance, in [5]. Finally, part (iv)
follows combining part (iii) with the fact that, by Lemma 2.1(iv), each
function IS\G has associated an AO stationary policy.

3 The Result

In this section Blackwell optimal policies are characterized in terms of
the AROE ; see Theorem 3.1 below. To start with, a sequence {Mn} of
MDP’s is introduced in Definition 3.1 and then some classes of policies
are introduced in Definition 3.2. In words, the sequence {Mn} is (recur-
sively) constructed as follows: (i) M0 is the MDP introduced in Section
2, and (ii) given Mn, the model Mn+1 is determined in the following
way. The first step consists in finding a solution of the AROE associated
to Mn, which is denoted by (gn,−hn+1). Next, the optimizers in the
right-hand side of the AROE for Mn determine the admissible actions
for model Mn+1, while hn+1 is the corresponding reward function. This
construction is now described in a precise manner and the opportunity
is taken to introduce some notation which will be used in the sequel.

Definition 3.1 Let M = (S,C, {C(x)}, r, p) be the MDP introduced in
Section 2. The sequence of MDP’s {Mn = (S,C, {Cn(x)}, hn, p)} is
recursively defined as follows:

(i) M0 := M .

Thus, M0 is just the original MDP, so that h0 = r and C0(x) =
C(x), x ∈ S; set IK0 := IK.

(ii) Let g0 ∈ IR and h1 ∈ IB(S) satisfy the AROE associated to M0,
that is,

g0 − h1(x) = sup
a∈C0(x)

[r(x, a)−
∑
y

pxy(a)h1(y)], x ∈ S,
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where without loss of generality it is assumed that

‖h1‖ ≤ B‖r‖;

see Lemma 2.1(ii). Define Mandl’s discrepancy function Φ0 by [17]

Φ0(x, a) := g0−h1(x)− [r(x, a)−
∑
y

pxy(a)h1(y)], (x, a) ∈ IK0. (3.1)

Using that r and h1 are continuous and bounded in their respective
domains together with Assumption 2.1, it is not difficult to see that
Φ0 ∈ IB(IK); furthermore, (2.6) implies that Φ ≥ 0. Also, observe that
Lemma 2.1(iv) yields that, for each x ∈ S, mina∈C0(x) Φ0(x, a) = 0, and
then the set

C1(x) := {a ∈ C0(x) |Φ0(x, a) = 0} (3.2)

is a nonempty and closed subset of C0(x). Since the latter is a compact
set, so is C1(x). Finally, define

M1 := (S,C, {C1(x)}, h1, p).

(iii) Suppose that Mn := (S,C, {Cn(x)}, hn, p) is given, where n ≥
1, hn ∈ IB(S), and each Cn(x) is a nonempty and compact subset
of C. Let gn ∈ IR and hn+1 ∈ IB(S) satisfy the AROE associated to
Mn, i.e.,

gn − hn+1(x) = sup
a∈Cn(x)

[hn(x)−
∑
y

pxy(a)hn+1(y)], x ∈ S,

where hn+1 is selected in such a way that

‖hn+1‖ ≤ B‖hn‖

(see Remark 2.1 and Lemma 2.1(ii)), and set IKn := {(x, a)|x ∈ S, a ∈
Cn(x)}. Now define the discrepancy function Φn associated to Mn by

Φn(x, a) :=

gn − hn+1(x)− [hn(x)−
∑
y

pxy(a)hn+1(y)], (x, a) ∈ IKn. (3.3)

As before it is not difficult to see that (a) Φn ≥ 0, (b) Φn ∈ IB(IKn),
and (c) for each x ∈ S, Φn(x, a) = 0 for some a ∈ Cn(x). Combining
this fact with the compactness of Cn(x), it follows that the sets

Cn+1(x) := {a ∈ Cn(x)|Φn(x, a) = 0}, x ∈ S, (3.4)

are nonempty and compact. The model Mn+1 is then defined by

Mn+1 := (S,C, {Cn+1(x)}, hn+1, p).
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Remark 3.1 (i) The MDP’s Mn are ‘nested’, in the sense that the sets
of admissible actions satisfy Cn+1(x) ⊂ Cn(x) for all x ∈ S, n ∈ IN; see
(3.2) and (3.4).

(ii) Since ‖hn+1‖ ≤ B‖hn‖ it follows that

‖hn‖ ≤ Bn‖h0‖ = Bn‖r‖, n ∈ IN. (3.5)

(iii) Since IKn = {(x, a)| a ∈ Cn(x), x ∈ S}, (3.1)–(3.4) yield that
IKn+1 = {(x, a) ∈ IKn|Φn(x, a) = 0}.

To continue, some classes of policies are introduced.

Definition 3.2 (i) For each x ∈ S and n ∈ IN define IPn(x) ⊂ IP as
follows:

IPn(x) := {π ∈ IP |P πx [At ∈ Cn(Xt)] = 1 for all t ∈ IN}.

(ii) For each x ∈ S set

IP∞(x) :=
∞⋂
n=0

IPn(x),

whereas
IP∞ :=

⋂
x∈S

IP∞(x).

(iii) Given x ∈ S, define C∞(x) :=
⋂∞
n=0Cn(x), while IF∞ := Πx∈SC∞(x).

Remark 3.2 (i) Since the sets Cn(x) are nonempty and compact and
Cn+1(x) ⊂ Cn(x), it follows that C∞(x) is a nonempty compact set and,
consequently, so is IF∞ [7, pp. 223–224]. On the other hand, it is useful
to observe that

IP∞ ∩ IF = IF∞. (3.6)

(ii) In words, a policy π belongs to IPn(x) if and only if the following
occurs P πx –almost surely: each At is an admissible action at Xt with
respect to model Mn.

(iii) Let n ∈ IN, x ∈ S and π ∈ IPn+1(x) be given. In this case 1 =
P πx [At ∈ Cn+1(Xt), t ∈ IN] = P πx [(Xt, At) ∈ IKn+1, t ∈ IN]. Then,
Remark 3.1(iii) yields that P πx [Φn(Xt, At) = 0 for all t ∈ IN] = 1. Using
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that Φn ≥ 0, this is equivalent to Eπx [Φn(Xt, At)] = 0, t ∈ IN, and (2.1)
allows to state the following:

If π ∈ IPn+1(x), then, Vα(π; Φn;x) = 0, α ∈ (0, 1).

Consequently,

(iv) If π∗ ∈ IP∞(x) (⊂ IPn+1(x)), then Vα(π∗; Φn;x) = 0 for all n ∈ IN
and α ∈ (0, 1).

The next theorem, which provides a characterization of Blackwell
optimal policies, is the main result in this note.

Theorem 3.1 (i) A policy π ∈ IP is BO at x if and only if π ∈ IP∞(x).

(ii) Policy π is BO if and only if π ∈ IP∞.

(iii) A stationary policy f ∈ IF is BO if and only if f ∈ IF∞.

According to Theorem 3.1(i), a policy π is BO at x if and only if
the following occurs P πx -almost surely: for each t ∈ IN, the action At is
admissible at Xt for each one of the models Mn in Definition 3.2. Thus,
the problem of determining the BO policies reduces to determining the
sets Cn(x), that is, to solving the AROE ’s corresponding to each one
of the models Mn. A proof of Theorem 3.1 will be presented in Section
5. For the moment, notice that part (ii) follows from part (i) in com-
bination with the definition of BO policy, and that part (ii) and (3.6)
together imply part (iii).

4 Preliminaries

This section contains the technical tools that will be used in the proof
of Theorem 3.1 , which are given below in the form of Lemmas 4.1–4.4
and Theorem 4.1. Throughout the remainder, Assumptions 2.1 and 2.2
are supposed to hold. On the other hand, before going any further it is
convenient to introduce some auxiliary notions.

Definition 4.1 (i) For each α ∈ (0, 1), the corresponding interest rate
ρ(α) is given by

ρ(α) :=
1− α
α

. (4.1)
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(ii) Given h ∈ IB(S), the function h̃ : IK→ IR is defined by

h̃(w, a) :=
∑
y

pwy(a)h(y), (w, a) ∈ IK. (4.2)

Remark 4.1 Notice that ‖h̃‖ ≤ ‖h‖. Moreover, using Assumption 2.1
it is not difficult to see that h̃ ∈ IB(IK).

The following simple result is the starting point in the way to the
proof of Theorem 3.1.

Lemma 4.1 Let x ∈ S and n ∈ IN be fixed.

(i) For each α ∈ (0, 1), π ∈ IP and h ∈ IB(S),

Vα(π; h̃;x) = [Vα(π;h;x)− h(x)]/α;

see (2.1) and (4.2).

(ii) For each π ∈ IPn+1(x)

(1− α)Vα(π;hn;x)→ gn as α↗ 1;

recall that, by Definition 3.1, hn and gn are the reward function and the
optimal average reward associated to the model Mn, respectively.

Proof: (i) By the Markov property, (4.2) is equivalent to

Eπx [h(Xt+1)|Xt = w,At = a] = h̃(w, a), (w, a) ∈ IK, t ∈ IN,

so that
Eπx [h(Xt+1)] = Eπx [h̃(Xt, At)], t ∈ IN.

Then, (2.1) yields that for each α ∈ (0, 1), Vα(π; h̃;x) =
∑∞
t=0 α

tEπx [h̃(Xt, At)] =∑∞
t=0 α

tEπx [h(Xt+1)], and using that Eπx [h(X0)] = h(x), a simple change
of variable in the index of the last summation yields

Vα(π; h̃;x) = [
∞∑
t=0

αtEπx [h(Xt, At)]− h(x)]/α,

and the conclusion follows from (2.1).

(ii) First, consider the case n = 0. In this situation, (3.1) yields (recall
that h0 = r)

g0−h1(w) = h0(w, a)+Φ0(w, a)−
∑
y

pwy(a)h1(y), (w, a) ∈ IK0(≡ IK).
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or, equivalently,

−h1(w) = H0α(w, a)− α
∑
y

pwy(a)h1(y), (w, a) ∈ IK0, (4.3)

where

H0α(w, a) := h0(w, a) + Φ0(w, a)− g0 − (1− α)h̃1(w, a), (w, a) ∈ IK0;

see (4.2).
Now observe that H0α ∈ IB(IK0) ≡ IB(IK), so that (4.3) yields (see

Theorem 2.2(a) in [11])

−h1(x) = Vα(π;H0α;x)

= Vα(π;h0;x) + Vα(π; Φ0;x)− g0/(1− α)

− (1− α)Vα(π; h̃1;x), x ∈ S,

where the second equality follows from the linearity of the mapping
r 7→ Vα(π; r;x); see (2.1). Thus, since Vα(π; Φ0;x) = 0 (recall that
π ∈ IP0+1 = IP1 and see Remark 3.2(iii)), the last displayed equation
implies

|(1− α)Vα(π;h0;x)− g0| = | − h1(x) + (1− α)Vα(π; h̃1;x)|(1− α)

≤ (‖h1‖+ ‖h̃1‖)(1− α)→ 0 as α↗ 1;

see (2.2) for the inequality. To conclude, consider the case n ≥ 1 and
observe that (3.3) can be written as

−hn+1(w) = hn(w) + Φn(w, a)− gn − (1− α)h̃n+1(w, a)

−α
∑
y

pwy(a)hn+1(y), (w, a) ∈ IKn. (4.4)

Now pick π ∈ IPn+1(x) and notice that P πx [(Xt, At) ∈ IKn+1] = 1, t ∈
IN; since IKn+1 ⊂ IKn, it follows that P πx [(Xt, At) ∈ IKn for all t ] = 1.
Then (4.4) yields, via the same arguments used in the case n = 0, that

−hn+1(x) = Vα(π;hn;x) + Vα(π; Φn;x)− gn/(1− α)

− (1− α)Vα(π; h̃n+1;x)

= Vα(π;hn;x)− gn/(1− α)− (1− α)Vα(π; h̃n+1;x),

where Remark 3.2(iii) was used to obtain the second equality. There-
fore,

|(1− α)Vα(π;hn;x)− gn| =
= | − hn+1(x) + (1− α)Vα(π; h̃n+1;x)|(1− α)

≤ (‖hn+1‖+ ‖h̃n+1‖)(1− α)→ 0 as α↗ 1,
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and the proof is complete.

Part (i) of Lemma 2.1 will now be used in the proof of the following
result.

Lemma 4.2 Let x ∈ S and π∗ ∈ IP∞ be arbitrary but fixed.

(i) For each π ∈ IP(≡ IP0(x))

Vα(π∗; r;x)−Vα(π; r;x) = Vα(π; Φ0;x)+ρ(α)[Vα(π∗;h1;x)−Vα(π;h1;x)];

see (4.1) and Definition 3.2.

(ii) If n ≥ 1 and π ∈ IPn(x), then

Vα(π∗;hn;x)− Vα(π;hn;x) =

Vα(π; Φn;x) + ρ(α)[Vα(π∗;hn+1;x)− Vα(π;hn+1;x)].

Proof: (i) Notice that for each (w, a) ∈ IK(≡ IK0) and α ∈ (0, 1),
(3.1) can be written as

−h1(w) = r1(w, a)− α
∑
y

pwy(a)h1(y), (w, a) ∈ IK, (4.5)

where

r1(w, a) := r(w, a)+Φ0(w, a)−g0−(1−α)h̃1(w, a), (w, a) ∈ IK; (4.6)

see (4.2) for the definition of h̃1. Since r1 ∈ IB(IK), (4.5) yields ([11,
theorem 2.2(a)]) that Vα(π; r1;x) = −h1(x) and then (see (4.6) and
(2.1)) it follows that

−h1(x) = Vα(π; r1;x)

= Vα(π; r;x) + Vα(π; Φ0;x)− g0/(1− α)

− (1− α)Vα(π; h̃1;x).

Combining Lemma 4.1(i) with Definition 4.1(i), the last equality
yields, via straightforward calculations, that

−h1(x)/α =

Vα(π; r;x) + Vα(π; Φ0;x)− g0/(1− α)− ρ(α)Vα(π;h1;x). (4.7)

Replacing π by π∗ in this equation and recalling that Vα(π∗; Φ0;x) = 0
(by Remark 3.1 (iv)), it follows that

−h1(x)/α = Vα(π∗; r;x)− g0/(1− α)− ρ(α)Vα(π∗;h1;x),
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and the conclusion follows combining this equality with (4.7).

(ii) Let π ∈ IPn(x) be arbitrary but fixed and observe that (4.4) is
equivalent to

gn − hn+1(w) = hn(w) + Φn(w, a)− (1− α)h̃n+1(w, a)

− α
∑
y

pwy(a)hn+1(y), (w, a) ∈ IKn;

see (4.2). Since P πx [(Xt, At) ∈ IKn for all t ∈ IN ] = 1, this equation
yields, via the arguments used in the proof of part (i), that

−hn+1(x)/α =

Vα(π;hn;x) + Vα(π; Φn;x)− gn/(1− α)− ρ(α)Vα(π;hn+1;x),

and replacing π by π∗ it follows that

−hn+1(x)/α = Vα(π∗;hn;x)− gn/(1− α)− ρ(α)Vα(π∗;hn+1;x),

where Vα(π∗; Φn;x) = 0 was used; see Remark 3.2(iv). Then the con-
clusion is obtained by substracting the last two displayed equations.

The next result is an extension of Lemma 4.2(i).

Lemma 4.3 Let x ∈ S and n ∈ IN be fixed. Then, for π∗ ∈ IP∞,
π ∈ IPn(x) and α ∈ (0, 1),

Vα(π∗; r;x)− Vα(π; r;x) =

ρ(α)n[Vα(π; Φn;x) + ρ(α)(Vα(π∗;hn+1;x)− Vα(π;hn+1;x))]. (4.8)

Proof: (By induction.) For n = 0 the assertion reduces to that
in Lemma 4.2(i). Suppose that the result is true for some n ∈ IN
and that π ∈ IPn+1(x) ⊂ IPn(x). In this case, by Remark 3.2(iii),
Vα(π; Φn;x) = 0 for all α ∈ (0, 1). Therefore, (4.8) and the induction
hypothesis together yield

Vα(π∗; r;x)− Vα(π; r;x) = ρ(α)n+1[Vα(π∗;hn+1;x)− Vα(π;hn+1;x)],

and applying Lemma 4.2(ii) with n+ 1 instead of n it follows that

Vα(π∗; r;x)− Vα(π; r;x) =

ρ(α)n+1[Vα(π; Φn+1;x) + ρ(α)(Vα(π∗;hn+2;x)− Vα(π;hn+2;x))],
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which is (4.8) with n+ 1 replacing n. This completes the proof.

The following lemma is the last preliminary before Theorem 4.1,
which together with the property in Lemma 2.1(ii) are the essential
components of the proof of Theorem 3.1 presented in the next section.

Lemma 4.4 Let x ∈ S and n ∈ IN be arbitrary but fixed. Then (i)–(ii)
below occur.

(i) Assume that {ak} ⊂ Cn(x) is such that

Φn(x, ak)→ 0 as k →∞,

and that
lim
k→∞

ak =: a

exists. Then, a ∈ Cn+1(x).

(ii) Let π ∈ IPn(x) be arbitrary. Then,

lim
α↗1

Vα(π; Φn;x) = Eπx [
∞∑
t=0

Φn(Xt, At)].

Moreover, if π /∈ IPn+1(x), then

Eπx [
∞∑
t=0

Φn(Xt, At)] > 0.

Proof: (i) Since {ak} ⊂ Cn(x) and Cn(x) is compact, limk→∞ ak = a
implies that a ∈ Cn(x). Using that Φn is continuous, it follows that
Φn(x, a) = limk→∞Φ(x, ak) = 0, so that a ∈ Cn+1(x); see (3.4).

(ii) Let π ∈ IPn(x). By (2.1), Vα(π; Φn;x) = Eπx [
∑∞
t=0 α

tΦn(Xt, At)]
and, recalling that Φn ≥ 0, the monotone convergence theorem yields

lim
α↗1

Vα(π; Φn;x) = Eπx [
∞∑
t=0

Φn(Xt, At)].

To conclude observe that, since Φn is nonegative, Eπx [
∑∞
t=0 Φn(Xt, At)] =

0 implies that Φn(Xt, At) = 0 P πx –almost surely for all t ∈ IN, i.e.,
P πx [At ∈ Cn+1(Xt), t ∈ IN ] = 1, so that π ∈ IPn+1(x). Therefore,
π /∈ IPn+1(x) implies that Eπx [

∑∞
t=0 Φn(Xt, At)] > 0.

Before stating Theorem 4.1, it is convenient to introduce some aux-
iliary functions.
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Definition 4.2 For each n ∈ IN, define Φ̂n+1 : IKn → IR by

Φ̂n+1(w, a) := gn+1 − hn+2(w)

− [hn+1(w)−
∑
y

pwy(a)hn+2(y)], (w, a) ∈ IKn. (4.9)

From Assumption (2.1) and the boundedness of hn+1 and hn+2 it
follows that Φ̂n+1 ∈ IB(IK). Also, Φ̂n+1 is an extension of Φn+1; the
domain of the latter is IKn+1 ⊂ IKn. Thus, Φ̂n+1(x, a) = Φn+1(x, a) ≥ 0
whenever (x, a) ∈ IKn+1 but, in general, it cannot be asserted that
Φ̂n+1 ≥ 0 in its whole domain.

Theorem 4.1 Let x ∈ S and n ∈ IN be fixed and suppose that π ∈
IPn(x) satisfies

Eπx [
∞∑
t=0

Φn(Xt, At)] <∞.

Then (i)–(v) below occur.

(i) For each y ∈ S,

lim inf
t→∞

Φ̂n+1(Xt, At)I[Xt = y] ≥ 0 P πx−almost surely.

(ii) For each finite set G ⊂ S,

lim inf
t→∞

Φ̂n+1(Xt, At)I[Xt ∈ G] ≥ 0 P πx−almost surely.

(iii) lim inf
n→∞

1

n+ 1
Eπx [

n∑
t=0

Φ̂n+1(Xt, At)] ≥ 0

(iv) lim inf
α↗1

(1− α)Vα(π; Φ̂n+1;x) ≥ 0.

(v) lim sup
α↗1

(1− α)Vα(π;hn+1;x) ≤ gn+1.

Proof: To begin with, notice that the following occurs P πx -almost
surely:

Φn(Xt, At)→ 0 as t→∞ and At ∈ Cn(Xt), t ∈ IN. (4.10)
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This assertion follows from Eπx [
∑∞
t=0 Φn(Xt, At)] <∞ and the fact that

π ∈ IPn(x); see Definition 3.2.

(i) Let y ∈ S be fixed and select a sample path {(Xt, At)} such that
(4.10) holds. It will be shown that for such a trajectory,

lim inf
t→∞

Φ̂n+1(Xt, At)I[Xt = y] ≥ 0. (4.11)

Notice that this yields the conclusion, since (4.10) occurs P πx -almost
surely. To verify (4.11) pick a sequence {tk} ⊂ IN satisfying

lim
k→∞

Φ̂n+1(Xtk , Atk)I[Xtk = y] =

lim inf
t→∞

Φ̂n+1(Xt, At)I[Xt = y]. (4.12)

and consider the following two cases:

Case 1: Xtk 6= y for infinitely many k’s.

In this situation, taking a subsequence if necessary, it can be assumed
that Xtk 6= y for all k ∈ IN. Then Φ̂n+1(Xtk , Atk)I[Xtk = y] = 0 for all
k and (4.12) implies that lim inft→∞ Φ̂n+1(Xt, At)I[Xt = y] = 0, so that
(4.11) holds.

Case 2: Xtk = y except for at most finitely many k’s.

In this case (after taking a subsequence if necessary) it can be assumed
that Xtk = y and then Atk ∈ Cn(Xtk) = Cn(y) for all k; recall that the
trajectory {(Xt, At)} satisfies (4.10). Since Cn(y) is compact, selecting
an appropriate subsequence it can be supposed that limk→∞Atk =: A
exists. On the other hand, (4.10) implies that

Φn(y,Atk) = Φn(Xtk , Atk)→ 0 as k →∞,

and then, an application of Lemma 4.4 (i) yields that A ∈ Cn+1(y),
that is (y,A) ∈ IKn+1. Also observe that

lim
k→∞

Φ̂n+1(Xtk , Atk)I[Xtk = y] =

lim
k→∞

Φ̂n+1(y,Atk) = Φ̂n+1(y,A); (4.13)

recall that Xtk = y for all k and that Φ̂n+1 is continuous. Using that
(y,A) ∈ IKn+1 it follows that Φ̂n+1(y,A) = Φn+1(y,A) ≥ 0 and, to-
gether with (4.12) and (4.13), this inequality yields (4.11). To conclude
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notice that, since a given trajectory {(Xt, At)} necessarily falls in either
Case 1 or Case 2, the above discussion can be summarized as follows:
For an arbitrary sample path {(Xt, At)} satisfying (4.10), the inequality
(4.11) is valid. This completes the proof of part (i) since, as already
mentioned, (4.10) occurs P πx -almost surely.

(ii) The conclusion follows form part (i) after observing that

Φ̂n+1(Xt, At)I[Xt ∈ G ] =
∑
y∈G

Φ̂n+1(Xt, At)I[Xt = y ].

(iii) Notice that part (ii) implies that for each finite set G ⊂ S,
lim infn→∞

1
n+1

∑n
t=0 Φ̂n+1(Xt, At)I[Xt ∈ G ] ≥ 0 P πx -almost surely.

Since Φ̂n+1 is bounded, Fatou’s lemma yields

lim inf
n→∞

1

n+ 1
Eπx [

n∑
t=0

Φ̂n+1(Xt, At)I[Xt ∈ G ] ] ≥ 0. (4.14)

On the other hand, observe that

lim sup
n→∞

1

n+ 1
Eπx [

n∑
t=0

|Φ̂n+1(Xt, At)|I[Xt ∈ S \G ] ]

≤ ‖Φ̂n+1‖J(π; IS\G;x)

≤ ‖Φ̂n+1‖J(IS\G;x);

see (2.4) and (2.5). Using this inequality it not difficult to see that

lim inf
n→∞

1

n+ 1
Eπx [

n∑
t=0

Φ̂n+1(Xt, At)] ≥

lim inf
n→∞

1

n+ 1
Eπx [

n∑
t=0

Φ̂n+1(Xt, At)I[Xt ∈ G ] ]

− ‖Φ̂n+1‖J(IS\G;x);

combining this with (4.14) it follows that

lim inf
n→∞

1

n+ 1
Eπx [

n∑
t=0

Φ̂n+1(Xt, At)] ≥ −‖Φ̂n+1‖J(IS\G;x),

and the conclusion is obtained by letting G increase to S and applying
Lemma 2.2(iv).
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(iv) This part follows from part (iii) via a Tauberian theorem; see, for
instance, Proposition 4-7 in [12].

(v) Notice that equation (4.9) defining Φ̂n+1 is equivalent to

−hn+2(w) = [hn+1(w) + Φ̂n+1(w, a)− (1− α)h̃n+2(w, a)− gn+1]

− α
∑
y

pwy(a)hn+2(y), (w, a) ∈ IKn, (4.15)

where α ∈ (0, 1); see (4.2) for the definition of h̃n+2. Since the function
within brackets in the right hand side of (4.15) belongs to IB(IKn) and
P πx [(Xt, At) ∈ IKn] = 1, it follows [11, Theorem 2.2(a)] that

−hn+2(x) = Vα(π;hn+1;x) + Vα(π; Φ̂n+1;x)

− (1− α)Vα(π; h̃n+2;x)− gn+1/(1− α)

which yields,

(1− α)[Vα(π;hn+1;x) + Vα(π; Φ̂n+1;x)]− gn+1 =

(1− α)[−hn+2(x) + (1− α)Vα(π; h̃n+2;x)].

Using that | − hn+2(x) + (1− α)Vα(π; h̃n+2;x)| ≤ ‖hn+2‖+ ‖h̃n+2‖,
the last equation implies that

lim
α↗1

(1− α)[Vα(π;hn+1;x) + Vα(π; Φ̂n+1;x)] = gn+1,

and then, from part (iv) it follows that

lim sup
α↗1

(1− α)Vα(π;hn+1;x) ≤ gn+1.

This completes the proof.

5 Proof of Theorem 3.1

In this section Theorem 3.1 is established. The proof given below uses
Remark 3.2(iv), Lemmas 4.1(ii), 4.3 and 4.4(ii), as well as Theorem
4.1(v).

Proof of Theorem 3.1 Let x ∈ S be fixed.

(i) Pick π∗ ∈ IP∞. First, it will be shown that π∗ is Blackwell optimal
at x. With this in mind, select π ∈ IP and consider the following two
cases.
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Case 1. π /∈ IP∞(x).

In this case there exists n ∈ IN such that π ∈ IPn(x) but π /∈
IPn+1(x); notice that π ∈ IP0(x) = IP. By Lemma 4.3 and (4.1), for all
α ∈ (0, 1)

[Vα(π∗; r;x)− Vα(π; r;x)]ρ(α)−n =

Vα(π; Φn;x) +
1− α
α

[Vα(π∗;hn+1;x)− Vα(π;hn+1;x)]. (5.1)

It will be shown that

lim inf
α↗1

[Vα(π∗; r;x)− Vα(π; r;x)]ρ(α)−n > 0. (5.2)

To verify this inequality notice that policy π satisfies one of the following
conditions (a) or (b); see Lemma 4.4(ii).

(a) limα↗1 Vα(π; Φn;x) = Eπx [
∑∞
t=0 Φn(Xt, At)] =∞.

In this situation, observing that ‖(1 − α)Vα(·;hn+1; ·)‖ ≤ ‖hn+1‖ (by
(2.2)), equation (5.1) yields that

lim
α↗1

[Vα(π∗; r;x)− Vα(π; r;x)]ρ(α)−n = Eπx [
∞∑
t=0

Φn(Xt, At)] =∞,

so that (5.2) certainly occurs.

(b) limα↗1 Vα(π; Φn;x) = Eπx [
∑∞
t=0 Φn(Xt, At)] <∞.

In this case Theorem 4.1(v) implies that

lim sup
α↗1

(1− α)Vα(π;hn+1;x) ≤ gn+1.

On the other hand, since π∗ ∈ IP∞ ⊂ IPn+2(x), Lemma 4.1(ii) yields
that

lim
α↗1

(1− α)Vα(π;hn+1;x) = gn+1.

Next, combining the last two convergences the following is obtained:

lim inf
α↗1

(1− α)[Vα(π∗;hn+1;x)− Vα(π;hn+1;x)] ≥ gn+1 − gn+1 = 0,

which, together with (5.1) yields

lim inf
α↗1

[Vα(π∗; r;x)− Vα(π; r;x)]ρ(α)−n ≥ Eπx [
∞∑
t=0

Φn(Xt, At)] > 0,
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where the strict inequality is due to the fact that π ∈ IPn(x) but π /∈
IPn+1(x); (see Lemma 4.4(ii)) so that, again, (5.2) occurs. To conclude,
observe that, since ρ(α) > 0 for all α ∈ (0, 1), (5.2) implies that there
exists α(π∗;π;x) ∈ (0, 1) such that [Vα(π∗; r;x) − Vα(π; r;x)] > 0 for
α ∈ (α(π∗;π;x), 1), so that (2.3) in the definition of Blackwell optimality
at x is satisfied.

Case 2. π ∈ IP∞(x).

In this case (5.1) still holds and, in addition, Vα(π; Φn;x) = 0 for all
α ∈ (0, 1), n ∈ IN; see Remark 3.1(iv). Therefore,

|Vα(π∗; r;x)− Vα(π; r;x)|
≤ 2ρ(α)n‖hn+1‖/α
≤ 2[ρ(α)B]n‖r‖[B/α], α ∈ (0, 1), n ∈ IN; (5.3)

see (2.2) and (3.5) for these inequalities. Next select α ∈ (B/(B+ 1), 1)
and notice that in this case 0 < ρ(α)B < 1. Therefore, after taking
limit as n→∞ in (5.3) it follows that

Vα(π∗; r;x) = Vα(π; r;x), α ∈ (B/(B + 1), 1),

and then (2.3) is satisfied with α(π∗;π;x) = B/(B + 1). In fact, using
that two power series coinciding in an interval necessarily coincide in
its whole domain, (2.1) implies that Vα(π∗; r;x) = Vα(π; r;x) for all
α ∈ (0, 1), so that in this case α(π∗;π;x) in (2.3) can be taken equal to
0.

Now observe that a given policy π necessarily falls into Case 1 or Case
2, so that the previous discussion can be summarized as follows:

A policy π∗ ∈ IP∞(x) is Blackwell optimal at x.

Conversely, if π /∈ IP∞(x) the analysis of Case 1 above shows that for
any π∗ ∈ IP∞(x) the inequality Vα(π; r;x)− Vα(π∗; r;x) < 0 occurs for
all α sufficiently close to 1, so that π is not Blackwell optimal at x.
Thus, the conclusion is that a policy π∗ is Blackwell optimal at x if and
only if π∗ ∈ IP∞(x), establishing part (i). The other parts of Theorem
3.1 can be obtained as outlined at the end of Section 3.

This section concludes with the following result giving a simple (and
verifiable) condition to guarantee the uniqueness of a Blackwell optimal
policy; this is a consequence of the analysis of Case 2 in the proof of
Theorem 3.1.
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Theorem 5.1 (i) Let x ∈ S be fixed and suppose that the mapping

a 7→ r(x, a), a ∈ C(x) is one−to−one. (5.4)

Then, C∞(x) is a singleton.

(ii) If (5.4) is satisfied for all x ∈ S, then

(a) There exists exactly one BO stationary policy, say f∗ ∈ IF∞.

Moreover,

(b) IP∞ consists, essentially, of policy f∗ in the following sense:

π∗ ∈ IP∞ if and only if P πx [At = f∗(Xt)] = 1, x ∈ S, t ∈ IN.

Proof: (i) Let a, a′ ∈ C∞(x) and select f, f ′ ∈ IF∞ such that f(x) = a
and f ′(x) = a′ . In this case f, f ′ ∈ IP∞ ⊂ IP∞(x) so that f and f ′

are BO at x. Then, the analysis of Case 2 in the proof of Theorem 3.1
yields that Vα(f ; r;x) = Vα(f ′; r;x) for 0 < α < 1, i.e.,

∞∑
t=0

αtEfx [r(Xt, At)] =
∞∑
t=0

αtEf
′

x [r(Xt, At)], α ∈ (0, 1),

and letting α decrease to 0 in both sides of this equality it follows that

r(x, a) = r(x, f(x)) = Efx [r(X0, A0)]

= Ef
′

x [r(X0, A0)] = r(x, f ′(x)) = r(x, a′)

and then (5.4) implies that a = a′, so that C∞(x) is a singleton.

(ii) If (5.4) occurs for all x ∈ S, each set C∞(x) is a singleton, say
C∞(x) = {f∗(x)}, and then the corresponding policy f∗ is the only
member of IF∞; this establishes (a) and then part (b) follows from
Definition 3.2, which yields the following:

π ∈ IP∞ ⇐⇒ for all x ∈ S, P πx [At ∈ C∞(Xt), t ∈ IN ] = 1

⇐⇒ for all x ∈ S, P πx [At = f∗(Xt), t ∈ IN ] = 1,

and the proof is complete.
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6 Conclusion

This work has considered the problem of establishing the existence of
Blackwell optimal policies in Markov decision processes satisfying the
Simultaneous Doeblin Condition and endowed with a continuous and
bounded reward function. According to Theorem 3.1, the Blackwell
optimal policies are characterized by the property that they always pre-
scribe actions maximizing the right hand side of each of the AROE ’s
corresponding to the sequence of ‘nested’ MDP’s introduced in Defini-
tion 3.1; this result was obtained by using only standard techniques in
the theory of MDP’s with the average reward criterion. On the other
hand, it would be interesting to extend the approach in this note to
more general frameworks, for instance MDP’s with Borel state space
or satisfying conditions less restrictive than Simultaneous Doeblin (see
[22]). Research in these directions is presently in progress.

Acknowledgement

The authors are grateful to Professor O. Hernández-Lerma for help-
ful comments.

Rolando Cavazos–Cadena
Departamento de Estad́ıstica y Cálculo
Universidad Autónoma Agraria
Antonio Narro
Buenavista, Saltillo COAH 25315
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