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CANCELLATION LAWS IN

TOPOLOGICAL PRODUCTS

EDUARDO SANTILLÁN ZERÓN 1

Abstract

Given three spaces A,B and H such that A×H is homeomorphic
to B × H, when are A and B homeomorphic? In this paper we
answer positively this old question when A and B are subsets of
the real line and H is connected.

1991 Mathematics Subject Classification: 54B10, 54A99, 54B15.
Keywords and phrases: Cancellation law, manifold, (pathwise) connect-
edness.

1 Introduction

Given three spaces A,B and H such that A×H ∼= B ×H, when are A
and B homeomorphic? By space we mean non-empty topological space.
This is an old question in topology without a complete answer so far, see
for example [1], [2], [3], [4] and [7]. Results which give conditions for the
answer to be positive are known as cancellation laws. In 1995 a notable
cancellation law was given by Behrends and Pelant in Theorem 1 of [2]:

Let H be a compact connected Hausdorff space such that the only
continuous mappings from H to itself are the constant ones and the
identity; then for arbitrary (compact) Hausdorff spaces A and B, the
cancellation law A×H ∼= B ×H ⇔ A ∼= B holds.

The main purpose of this paper is to present several cancellation
laws all of which are deduced from Theorems 1.1 and 1.2 (proved in
sections 2 and 3 respectively). The spaces: IR, IR+ = [0,∞) ⊆ IR and
I = [0, 1] ⊆ IR are respectively the real line, the semi-closed interval
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and the closed unit interval of the real line; they are all endowed with
the standard topology. In this paper we show the following results.

Theorem 1.1 Let H be a connected space such that the following four
spaces are not homeomorphic by pairs: IR × H, IR+ × H, I × H and
H. Then the cancellation law: A ×H ∼= B ×H ⇔ A ∼= B holds when
A and B are arbitrary subsets of the real line.

Theorem 1.2 Let H be a pathwise connected space. Then the cancel-
lation law: A×H ∼= B ×H ⇔ A ∼= B holds for all Hausdorff spaces A
and B which both contain no copies of the real line.

Likewise, there exist spaces which do not satisfy the cancellation
law.

Example 1.3 No two of the intervals IR, IR+ and I are homeomor-
phic; however it is easy to prove that the following three products are
homeomorphic: IR× IR+, IR+ × IR+ and I × IR+.

Example 1.4 The following two closed subsets A,B ⊆ IR2 are clearly
non-homeomorphic; however, A×I ∼= B ×I (both subsets are built by
adding “branches” to the closed square I2):

A := B :=

Moreover, by adding “branches” to an open square of IR2, we also can
build two non-homeomorphic subsets A,B ⊆ IR2 such that A × IR ∼=
B × IR:

A := B :=

This paper is divided into four sections as follows: Section 1 is the
introduction. Theorem 1.1 is shown in section 2. Sections 3 is devoted to
prove Theorem 1.2. Applications of Theorems 1.1 and 1.2 are presented
in section 4.
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2 Proof of Theorem 1.1

Recall the hypotheses of Theorem 1.1: A and B are subsets of the real
line, the space H is connected and the four spaces IR × H, IR+ × H,
I ×H and H are not homeomorphic by pairs. Now, in the cancellation
law A×H ∼= B ×H ⇔ A ∼= B, the implication [⇐] is trivial. Whence
we just need to show the converse implication [⇒]. Let g be a fixed
homeomorphism from A×H onto B ×H.

If A and/or B are empty, we have immediately that A and B are
homeomorphic. Hence, we shall suppose that A and B are both non-
empty sets. Decompose them into their connected components (see
[5, p. 111]):

{Ak}k∈K are the connected components of A, and
{Bl}l∈L are the connected components of B.

Since H is connected, we have immediately that (see Exemple 3 of
[5,page 111]):

{Ak ×H}k∈K are the connected components of A×H, and
{Bl ×H}l∈L are the connected components of B ×H.

It is easy to see that A × H and B × H have got the same number
of connected components. Whence, we can assume that L = K; and
without loss of generality, we likewise can suppose that g(Ak × H) =
Bk ×H for every index k ∈ K. Observe the following facts (recall that
BdAAk = Ak ∩A−Ak), given k ∈ K:

i) g(BdAAk × H) = g(BdA×H(Ak × H)) = BdB×H(Bk × H) =
BdBBk ×H.

ii) Ak (and Bk) is a singleton or it is homeomorphic to IR, IR+ or I.

iii) BdAAk ⊆ Ak ⊆ IR, because Ak is closed in A (see [5, p. 112]).

iv) When Ak is not a singleton, each point of BdAAk is an end point
of Ak, from points (ii) and (iii).

v) Likewise, when Bk is not a singleton, each point of BdBBk is an
end point of Bk.

vi) Finally: |BdAAk| = |BdBBk| ≤ 2, by points (i), (iv) and (v).

From the facts above, we can conclude the following:
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Lemma 2.1 Let k ∈ K be given, then for every x ∈ BdAAk (resp. y ∈
BdBBk) there exists y ∈ BdBBk (resp. x ∈ BdAAk) such that g({x} ×
H) = {y} ×H.

On the other hand, from the given hypotheses we can deduce thatAk

and Bk are homeomorphic for every index k ∈ K. Otherwise, ifAk 6∼= Bk,
we would have that Ak ×H 6∼= Bk ×H, a contradiction to g(Ak ×H) =
Bk × H. Moreover, using Lemma 2.1, we can find a homeomorphism
Gk from Ak onto Bk such that: Gk(x) × H = g({x} × H) for each
x ∈ BdAAk; and G−1

k (y)×H = g−1({y}×H) for each y ∈ BdBBk. Now
build the function Γ : A→ B as follows:

If a ∈ Ak ⊆ A for some k ∈ K, then Γ(a) = Gk(a).

Since {Ak}k∈K is a “partition” of A and {Bk}k∈K is a “partition”
of B (see [5, p. 112]), it is easy to deduce that Γ is a bijective function.
We assert that Γ is a homeomorphism from A onto B as well. Firstly,
we show that Γ is a continuous mapping. Given an index l ∈ K and a
point a ∈ Al, consider a sequence {an}n∈IN which converges to a when
n→∞ (the set of natural numbers is denoted by IN). Without loss of
generality, we need to analyze only three cases:

1) {an}n∈IN ⊆ Al.
2) {an}n∈IN ⊆ A−Al.
3) {an}n∈IN = {bn}n∈IN ∪ {cn}n∈IN such that {bn}n∈IN ⊆ A−Al,
{cn}n∈IN ⊆ Al, and both: {bn}n∈IN and {cn}n∈IN converge to a.

When case (1) holds, we have got that Γ(an) = Gl(an) ⊆ Bl for every
n ∈ IN . Hence, the sequence {Γ(an)}n∈IN converges to Gl(a) = Γ(a)
when n→∞, because Gl is a homeomorphism.

In case (2), it is easy to note that a ⊆ BdAAl. Now, for each n ∈ IN ,
let Ak(n) be the connected component which contains the point an (note
that Ak(n) 6= Al). By the structure of the real line, given an open ball
B(a, ε) of center a and radius ε > 0, there exist a natural number n0

such that Ak(n) ⊆ B(a, ε) when n ≥ n0. That is: the sequence of sets
{Ak(n)}n∈IN converges to the singleton {a} when n→∞. Likewise, we
have got that {Ak(n) ×H}n∈IN converges to {x} ×H. Now then, since
g(Ak(n) ×H) = Bk(n) ×H for each n ∈ IN , and g is a homeomorphism
from A × H onto B × H; there exists a point y ∈ BdBBl such that
the sequence {Bk(n) ×H}n∈IN converges to {y} ×H when n → ∞ and
g({a}×H) = {y}×H (recall that a ∈ BdAAl and use Lemma 2.1). On
the other hand, notice that Γ(an) ∈ Γ(Ak(n)) = Bk(n) for each n ∈ IN .



CANCELLATION LAWS 71

Moreover, the equality Γ(a) = Gk(a) = y holds (recall the definition
of Gk). Whence, the sequence {Γ(an)}n∈IN converges to Γ(a) when
n→∞.

Finally, in case (3), we proceed as in cases (1) and (2). In both
cases the sequences {Γ(bn)}n∈IN and {Γ(cn)}n∈IN converge to Γ(a) when
n→∞. Whence, their union {Γ(bn)}n∈IN ∪{Γ(cn)}n∈IN = {Γ(an)}n∈IN
converges to Γ(a) as well. Thus, Γ is a continuos mapping. In a similar
way we can prove that Γ−1 is an open mapping, and so Γ is a homeo-
morphism from A onto B.

3 Proof of Theorem 1.2

Recall the hypotheses of Theorem 1.2: A and B are Hausdorff spaces
which both contain no copies of the real line and the space H is pathwise
connected. Now, in the cancellation law A×H ∼= B×H ⇔ A ∼= B, the
implication [⇐] is trivial. Thus, we just show the converse implication
[⇒].

We assert that A (and B) is totally pathwise disconnected (see
[5, p. 119]). Otherwise, if there exists a non-constant continuous map-
ping f : I → A, the image f(I) would be a non-degenerate Peano
continuum by the Hahn-Mazurkiewicz theorem (see [8, p. 298] and
[9, p. 128]). Then, the set f(I) would contain a copy of the real line (see
[9, p. 130]), a contradiction. Likewise, the space B is totally pathwise
disconnected.

Let g be a fixed homeomorphism from A×H onto B ×H. Since H
is pathwise connected, we can deduce that {{a} ×H}a∈A (resp. {{b} ×
H}b∈B) are the pathwise connected components of A×H (resp. B×H),
see [6, p. 461]. Hence, for each a ∈ A (resp. b ∈ B) there exists unique
b ∈ B (resp. a ∈ A) such that g({a} × H) = {b} × H. We use just
the last statement to show that A and B are homeomorphic, thus we
can change the given hypotheses and use other hypotheses which assure
that the last statement holds. For example, we can change pathwise
connectedness to connectedness, σ-connectedness, etc.

Define the relation R : A → B by R = πB ◦ g ◦ π−1
A . Let a ∈ A be

a given point, from the preceding paragraph, we have got that R(a) =
πB ◦ g ◦ π−1

A (a) = πB ◦ g({a} ×H) = πB({b} ×H) = b (where b ∈ B is
unique). Likewise, for every b ∈ B there exists a unique point a ∈ A such
that R(a) = b. Therefore, R is a bijective function. On the other hand,
πA and πB are open and continuous mappings, so R is also a open and
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continuous mapping. Whence R : A→ B is a homeomorphism.

4 Applications

We now present applications of Theorems 1.1 and 1.2. There exist many
spaces satisfying the hypotheses of Theorem 1.1, for instance:

Proposition 4.1 Let H be a connected n-manifold without boundary (n
is some natural number). Then the cancellation law: A ×H ∼= B ×H
⇔ A ∼= B holds for arbitrary subsets A,B ⊆ IR.

Proof: Consider two manifolds X and Y . If we denote by ∂X the
boundary of X as manifold (we use the notation ∂ in order to distinguish
this from Bd, the boundary as space), then ∂(X × Y ) = (∂X × Y ) ∪
(X × ∂Y ). Therefore:

∂H = ∅
∂(IR×H) = ∅

∂(IR+ ×H) = {0} ×H is connected.
∂(I ×H) = {0, 1} ×H is disconnected.

On the other hand, the dimension of the manifold IR ×H is n + 1.
Whence, the four spaces: I × H, IR × H, IR+ × H and H are not
homeomorphic by pairs. The result follows then from Theorem 1.1.

We can deduce more cancellation laws, using the following lemma
due to professor Alejandro Illanes Mej́ıa (private communication):

Lemma 4.2 Given a connected compact space H, we have: IR+×H 6∼=
IR×H.

Proof. Suppose that IR × H is homeomorphic to IR+ × H and take
g : IR+×H → IR×H a homeomorphism, π1 : IR×H → IR the projection,
π2 : IR+ ×H → IR+ the projection and E ={1}×H ⊆ IR×H.

Since H is compact and π2 is a continuous mapping, the set π2 ◦
g−1(E) ⊆ IR+ is compact, and so it is bounded. Whence, there exists
a point a ∈ IR+ such that π2 ◦ g−1(E) ⊆ [0, a]. Besides, the inclusions
g−1(E) ⊆ D ⊆ IR+×H hold, where D = [0, a]×H is compact. Now note
that (IR+ × H) − D = (a,∞) × H is connected. Therefore, applying
g we obtain that E ⊆ g(D) ⊆ IR × H, where g(D) is compact and
(IR×H)− g(D) is connected.

On the other hand, the set π1 ◦ g(D) ⊆ IR is compact and so it
is bounded. That is, there exist two points b, c ∈ IR, b < c, such
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that π1 ◦ g(D) ⊆ [b, c]. Hence: {1} × H = E ⊆ g(D) ⊆ [b, c] × H ⊆
IR×H. Taking complements in these inclusions (considering IR×H as
the universe set), we obtain:

((−∞, b)×H) ∪ ((c,∞)×H) ⊆ (IR×H)− g(D) ⊆ (IR− {1})×H.

This implies that IR×H−g(D) is not connected, a contradiction.

Proposition 4.3 Let H be a connected compact space which is not
homeomorphic to I × H (for example, H = I or H = S1). Then
the cancellation law: A × H ∼= B × H ⇔ A ∼= B holds for arbitrary
subsets A,B ⊆ IR.

Proof: It is easy to see that H and I ×H are compact, but IR×H and
IR+ × H are not. Hence, from the given hypotheses and Lemma 4.2,
the four spaces: I ×H, IR×H, IR+×H and H are not homeomorphic
by pairs. The result follows then from Theorem 1.1.

We conclude this paper with the following three examples, which
illustrate Theorems 1.1 and 1.2 (and Propositions 4.1 and 4.3).

Example 4.4 If we take H = IR, H = I or H = S1, the cancellation
law A ×H ∼= B ×H ⇔ A ∼= B holds for arbitrary subsets A,B ⊆ IR.
However, if we take H = IR+, this cancellation law fails to hold as
example 1.3 shows. Moreover, if we take A,B ⊆ IRn with n a natural
number greater than one, the cancellation law may fail to hold as Fox’s
example (see [7]) and example 1.4 show.

Example 4.5 Let X be a given Hausdorff space, the following two
statements are equivalent:

1. X contains no copies of the real line.

2. For all A,B ⊆ X, the cancellation law: A × IR+ ∼= B × IR+ ⇔
A ∼= B holds.

Indeed, (1) implies (2) by Theorem 1.2. In order to show that (2)
implies (1), suppose that X contains a copy of IR. Then we can find
two subsets A,B ⊆ X which are respectively homeomorphic to IR and
I. Hence: A 6∼= B, but A× IR+ ∼= B × IR+ according to Example 1.3, a
contradiction.

Likewise, reasoning as in the last paragraph, we have



74 EDUARDO SANTILLÁN

Example 4.6 Let X be a Hausdorff space, consider the following state-
ments:

1) X contains no copies of the real line.
2) X is an arbitrary subset of the real line.
3) When H = I or H = IR, the cancellation law:

A×H ∼= B ×H ⇔ A ∼= B holds for all A,B ⊆ X.
4) X contains no copies of the real plane IR2.

Then: (1)⇒(3) by Theorem 1.2. (2)⇒(3) by Propositions 4.1 and 4.3.
Finally, from example 1.4, it follows that (3)⇒(4). Obviously: (3) may
not imply either (1) or (2). However, we conjecture that (4) implies (3),
when X is a Peano continuum.
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Math., 31 (1938), 137–148.

[4] K. Borsuk, On the decomposition of manifolds into products of curves and sur-
faces, Fund. Math., 33 (1945), 373–298.

[5] J. Dugundji, Topology, Allyn and Bacon, Boston 1966.

[6] R. Engelking, General topology, PWN, Warszwa 1977.

[7] R.H. Fox, On a problem of S. Ulam concerning Cartesian products, Fund. Math.,
34 (1947), 278–287.
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