
Morfismos, Vol. 2, No. 2, 1998, pp. 17–35

FOLIATED BUNDLES AND METRIC

RIGIDITY ∗

RAUL QUIROGA BARRANCO 1

Abstract

We obtain a Hermitian metric rigidity theorem for foliated vector
bundles other than the leafwise tangent bundle, allowing us to de-
velop results not considered in [29]. In particular, we obtain as a
consequence a vanishing theorem for the leafwise cohomology of a
foliation, which has as a corollary a partial vanishing result of cer-
tain holomorphic 1-forms on suitable compact Kaehler manifolds,
and a rigidity property for holomorphic equivalences of foliations
by irreducible bounded symmetric domains with complex dimen-
sion ≥ 2.
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1 Motivation

The symmetric spaces of non-compact type and their quotients have
been a source of a great deal of study. One of the first important
steps into the understanding of the relations between the geometry and
topology of compact quotients of such spaces was given by Mostow’s
strong rigidity theorem.

Theorem (Mostow[25]). Let X and Y be compact quotients of symmet-
ric spaces of non-compact type with the same fundamental group. If X
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has no closed two dimensional local factor, then X and Y are isometric
up to normalizing constants.

Later on, Mostow’s theory was extended with Margulis’ work by
considering the fundamental group of a quotient of a symmetric space
as a discrete subgroup of a semisimple Lie group, and then proceeding
to study the extension problem for homomorphisms defined on such
subgroups. A particular case of the main result is:

Theorem (Margulis’ superrigidity [20]). Let G be a connected centerless
semisimple Lie group without compact factors rank ≥ 2, Γ an irreducible
lattice of G and H a non-compact simple Lie group. If π : Γ → H is
a homomorphism with Zariski dense image, then π has a continuous
extension to a homomorphism G→ H.

Since any connected centerless semisimple Lie group is the connected
component of the group of isometries of a symmetric space, it follows
from the basic properties of symmetric spaces that the extension of
π induces a totally geodesic map of the symmetric spaces associated
to G and H. Of course, the homomorphism π can be considered as
coming from a representation of the fundamental group of a quotient of
the symmetric space associated to G, so that the above consequence of
Margulis’ superrigidity can be expressed in purely geometric terms.

Theorem (Margulis’ geometric superrigidity). Let X̃, Ỹ be symmetric
spaces of non-compact type. Assume that Ỹ is irreducible and rank(X̃) ≥
2, and let X = X̃/Γ be an irreducible finite volume quotient. If ρ : Γ→
Isom(Ỹ ) is a representation with Zariski dense image, then there is a
ρ-equivariant totally geodesic map X̃ → Ỹ .

From this point, there have been several routes followed in an at-
tempt to generalize or extend the superrigid properties of semisimple
Lie groups without compact factors and the symmetric spaces associ-
ated to them. In the context of Lie group actions, Zimmer [36] extended
Margulis’ superrigidity to a cocycle superrigidity which has proved use-
ful in the study of actions of semisimple Lie groups without compact
factors.

On the other hand, from a geometric point of view there are several
natural generalizations to both Margulis’ superrigidity and Mostow’s
strong rigidity. First it was proved that the strong rigidity of symmet-
ric spaces is a phenomenon that takes place in the broader context of
manifolds with non-positive curvature.
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Theorem (Gromov[3], Ballmann-Eberlein[2]). Let X be an irreducible
finite volume quotient of a symmetric space of rank ≥ 2. Let Y be a
complete Riemannian manifold of bounded non-positive sectional curva-
ture and finite volume. If π1(X) ∼= π1(Y ), then X and Y are isometric
up to normalizing constants.

Given this result, it was natural to attempt to extend the above
theorem on Margulis’ geometric superrigidity to the context of repre-
sentations of lattices of semisimple Lie groups into groups of isometries
of non-positively curved Riemannian manifolds. A natural result one
can seek is the following general problem of the geometric Archimedean
superrigidity for irreducible symmetric spaces:

Problem . Let Ω be an irreducible symmetric space of non-compact
type, Γ the fundamental group of a finite volume quotient of Ω and
ρ : Γ → Isom(Ñ) a homomorphism into the group of isometries of
a complete simply connected Riemannian manifold of non-positive sec-
tional curvature. Find restrictions on the choices of ρ and Ñ that imply
the existence of an isometric totally geodesic embedding Ω ↪→ N .

This problem has been satisfactorily solved by using existence theo-
rems of ρ-equivariant harmonic maps and Bochner formulae techniques.
A remarkable fact about geometric superrigidity is that it has allowed to
prove superrigidity of lattices in the groups Sp(1, n) and F4(−20) (cf. [5]),
a case which was not considered in Margulis’ work.

Assuming the existence of ρ-equivariant harmonic maps, Mok-Siu-
Yeung [23] have provided a comprehensive study of the Bochner tech-
niques used in geometric superrigidity. Their work, together with an
existence theorem of ρ-equivariant harmonic maps in the case of Ñ sym-
metric due to Corlette [4], provides a geometric proof of the Archimedean
case of Margulis’ superrigidity. This existence result of Corlette has been
extended by Labourie to include more general manifolds Ñ :

Theorem (Labourie[18]). Let M be a compact Riemannian manifold,
Ñ a simply connected complete Riemannian manifold with non-positive
sectional curvature and ρ : π1(M) → Isom(Ñ) a homomorphism. If
Im(ρ) is geometrically reductive, then there is a ρ-equivariant harmonic
map f : M̃ → Ñ .

We refer to Labourie [18] for a complete explanation of the term
geometrically reductive. In this paper the existence is attained by using
the heat equation so that, starting with any ρ-equivariant map, we
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move through a homotopy to get a harmonic map. And it is a homotopy
invariant of an arbitrary ρ-equivariant map f : Ω→ Ñ , i.e. the image of
ρ, and its non-triviality, i.e. geometric reductivity, that allows to say that
the existence of such map f implies the existence of a harmonic map.
This in turn becomes a totally geodesic map (under certain hypothesis)
by using the Bochner formula of Mok-Siu-Yeung. To illustrate this
we state the following easy consequence of Labourie [18] and Mok-Siu-
Yeung [23]:

Theorem. Let M be a compact quotient of an irreducible symmetric
space Ω of non-compact type which is either of rank ≥ 2 or a Cayley
or quaternionic hyperbolic space. Let Ñ be a complete simply connected
Riemannian manifold with non-positive sectional curvature in the case
rank(Ω) ≥ 2 and with non-positive complexified sectional curvature oth-
erwise, and let ρ : π1(M)→ Isom(Ñ) be a homomorphism with geomet-
rically reductive image. If f : Ω→ Ñ is a ρ-equivariant map, then f is
homotopic to an isometric totally geodesic embedding.

This result provides a solution for the following restatement of the
geometric superrigidity problem, at least for suitable choices of Ω and
Ñ .

Problem (Geometric Archimedean superrigidity). Let M be a compact
quotient of an irreducible symmetric space Ω of non-compact type with
rank ≥ 2, Ñ a complete simply connected Riemannian manifold with
non-positive sectional curvature, ρ : π1(M) → Isom(Ñ) a homomor-
phism and f : Ω → Ñ a ρ-equivariant smooth map. Find a homotopy
invariant of f whose non-triviality implies the existence of an isometric
totally geodesic embedding Ω ↪→ Ñ .

The last theorem shows that ρ(π1(M)) is one such homotopy invari-
ant if we call it non-trivial whenever it is geometrically reductive. On
the other hand, Margulis’ geometric superrigidity uses the same homo-
topy invariant but in this case non-triviality holds when ρ(π1(M)) is
Zariski dense. In both cases a common hypothesis for the solution of
the above geometric Archimedean superrigidity is the compactness of
the manifolds involved or at least a bound on the volume and curvature.
This remark suggests to consider the problem of geometric superrigidity
in a broader context that includes manifolds with some kind of bounded
geometry.

Compact manifolds with smooth foliations carrying smooth leafwise
Riemannian metrics provide such setup. Even though a leaf in one such
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foliation is not in general a finite volume quotient of its universal cover,
it has been possible to extend results given for finite volume manifolds
to this kind of Riemannian manifolds. One of the many examples of
this remark is the following:

Theorem (Strong rigidity for foliations, Zimmer[33]). Let M and N
be standard Borel spaces with measurable foliations carrying measur-
able leafwise smooth Riemannian metrics that arise from free ergodic
irreducible actions of connected centerless semisimple Lie groups G and
H, respectively. So that in particular, the leaves are locally symmetric.
Assume that rank(G) ≥ 2. If M and N are transversally equivalent,
then there is an isomorphism of measurable foliations which is (up to
normalizing constants) an isometry on a.e. leaf.

We recall that two foliations M and N as above are transversally
equivalent if they have transversals T and T ′, respectively, for which
there is a Borel isomorphism T → T ′ that preserves the equivalence
relation induced by the foliation as well as the measure class. For a
complete discussion of the relevance of these concepts we refer to [33]
and [34]. Here we want to point out that it is the equivalence relation
of the transversal that determines how the leaves are packed into the
foliation, so it plays a role similar to that of the fundamental group of
a Riemannian manifold in providing a way to build a finite volume or
compact object out of a non-compact geometric model.

Given this strong rigidity for foliations and the above statement for
the geometric Archimedean superrigidity it is natural to consider the
following:

Problem A (Geometric superrigidity for foliations). Let M and N
be compact smooth manifolds with smooth leafwise Riemannian metrics
and let f : M → N be a smooth leaf preserving map. Assume each leaf
of M is isometrically covered by a fixed irreducible symmetric space Ω
of non-compact type, and that each leaf of N has non-positive sectional
curvature. Find a homotopy invariant for f whose non-triviality implies
the existence of an isometric totally geodesic immersion of Ω into some
or most of the leaves of N .

A variation of this problem can be obtained by replacing N above
with a Riemannian manifold.

Problem B . Let M be compact smooth manifold with a smooth leaf-
wise Riemannian metric, N a compact Riemannian manifold with non-
positive sectional curvature and f : M → N a smooth map. Assume
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that each leaf of M is isometrically covered by a fixed irreducible sym-
metric space Ω of non-compact type. Find a homotopy invariant for f
whose non-triviality implies the existence of an isometric totally geodesic
immersion of Ω→ N .

Solutions to Problems A and B were developed in [30]. On the
other hand, it is known that the geometric rigidity for symmetric spaces
established in one of the above Theorems due to Gromov, Ballmann and
Eberlein is even stronger for Hermitian symmetric spaces (symmetric
spaces which have a Kaehler structure compatible with its Riemannian
metric). The following result due to Mok is an example of such claim:

Theorem (Mok[21]). Let X be a compact quotient of an irreducible
Hermitian symmetric space of rank ≥ 2. Let h be a Kaehler metric
on X with nonpositive holomorphic bisectional curvature. Then, h is a
constant multiple of the canonical metric.

We refer to [21] for further details and applications to holomorphic
maps on bounded symmetric domains. Following the idea of introducing
foliations as compact models for symmetric spaces, it was proved in [29]
a result similar to the above which provides a foliated Hermitian metric
rigidity:

Theorem (Quiroga [29]). Let M be a compact manifold with a smooth
foliation carrying a finite invariant transverse measure µ, a leafwise
holomorphic structure and a smooth leafwise Kaehler metric g. Assume
that each leaf is uniformized by a fixed irreducible bounded symmetric
domain Ω with rank ≥ 2. If h is a smooth leafwise Hermitian metric
with non-positive curvature in the sense of Griffiths, then g and h are
homothetic on µ-a.e. leaf of M .

The main contribution of this paper within this setup is to show that
the above foliated Hermitian metric rigidity extends to a foliated Her-
mitian metric rigidity for holomorphic bundles other than the tangent
bundle.

2 Introduction

This paper contains a reasonably complete presentation of results which
establish Hermitian metric rigidity for suitable foliated vector bundles.
However, most of the proofs are omitted and will appear elsewhere. Our
chief result is the following:
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Main Theorem. Let M be a compact manifold with a smooth foliation
carrying a finite invariant transverse measure µ, a leafwise holomorphic
structure and a leafwise Kaehler structure g. Assume that with g each
leaf is uniformized by a fixed irreducible bounded symmetric domain Ω.
Let (V, h0) be a Hermitian vector bundle over M which is holomorphic,
irreducible, locally homogenous and properly seminegative in the sense
of Griffiths along the leaves. If h is a Hermitian metric on V with
seminegative curvature in the sense of Griffiths along the leaves, then h
is homothetic to h0 on µ-a.e. leaf.

In the next section we will explain the notions considered in this
statement, here we remark that the conditions on (V, h0) are satisfied by
the leafwise holomorphic tangent bundle T 1,0

F M (the bundle of complex
vectors of type (1, 0) tangent to the leaves) for rank(Ω) ≥ 2 and for the
bundle Sn+1TF ⊗KF in the case Ω = Bn, the unit ball, where Sn+1TF
is the n+1 symmetric power of the leafwise holomorphic tangent bundle
and KF is the leafwise canonical bundle.

From the Main Theorem we obtain the following rigidity property
for holomorphic equivalences of foliations, which is in the spirit of the
results by Zimmer and others found in [27], [33], [34] and [35].

Theorem A. Let M be a compact manifold and F , F ′ be smooth leaf-
wise holomorphic foliations with the same leaf dimension and carrying
leafwise Kaehler metrics g and g′, respectively, such that the leaves of
F are uniformized by a fixed irreducible bounded symmetric domain Ω.
Assume that F has a finite invariant transverse measure µ and that
either one of the following is satisfied:

1. rank(Ω) ≥ 2 and the leaves of F ′ have non-positive holomorphic
bisectional curvature, or

2. both the leaves of F and F ′ are uniformized by Bn.

If f :M → M is a smooth map that defines a leafwise holomorphic
equivalence from F onto F ′, then f is up to a constant an isometry on
µ-a.e. leaf of F .

Case (1) in this result can be seen as a consequence of Theorem 4.6
in [29], however case (2) cannot be obtained from [29].

We also deduce the following vanishing theorems for leafwise holo-
morphic sections of suitable vector bundles:
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Theorem B. Let M and (V, h0) be as in the Main Theorem, and let F
be a smooth leafwise holomorphic complex vector bundle over M carrying
a Hermitian metric for which F is locally flat when restricted to the
leaves. Then any smooth leafwise holomorphic section σ of V ∗ ⊗ F
vanishes on µ-a.e. leaf of M .

As an immediate consequence of this we obtain the following:

Theorem 6.1. Let M be as in the Main Theorem with Ω an irreducible
bounded symmetric domain of rank ≥ 2 and let F be a smooth leafwise
holomorphic complex vector bundle over M carrying a Hermitian metric
for which F is locally flat when restricted to the leaves. Then any smooth
leafwise holomorphic F -valued 1-form vanishes on µ-a.e. leaf of M . In
particular, if µ is positive on open sets, then the leafwise cohomology
group H1,0

F (M) = 0.

As a corollary to this result we obtain the following vanishing crite-
rion for smooth leafwise harmonic 1-forms:

Theorem 6.2. Let M be as in the Main Theorem with Ω an irreducible
bounded symmetric domain of rank ≥ 2. Then any smooth leafwise
harmonic 1-form vanishes on µ-a.e. leaf; in particular, any such form
is identically zero for µ positive on open sets.

This result should be compared to the techniques found in Zim-
mer [39] where the infinitesimal rigidity proven there has as an essential
step a vanishing criterion for measurable leafwise smooth harmonic 1-
forms defined over some particular suspensions. Our result requires
global smoothness but it applies to more general foliations and hence
can be considered as a step in developing the tools required to improve
the results of [39] that are needed to show property (V) (see [39]), for
lattices in the group G of isometries of Ω as above, which leads to strong
rigid properties for actions of G on principal bundles.

Theorem 6.1 also provides a partial vanishing for holomorphic 1-
forms on suitable Kaehler manifolds.

Theorem 6.4. Let (X, g) be a compact Kaehler manifold such that
(X̃, g) has as a de Rham factor an irreducible bounded symmetric do-
main Ω of rank ≥ 2. If F is a locally flat Hermitian holomorphic vector
bundle over X, then any holomorphic F -valued 1-form ω vanishes on
vectors whose lifts to X̃ are tangent to Ω. In particular, this partial
vanishing is satisfied for any holomorphic 1-form on X.
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3 Foliated vector bundles

In this section we recollect some notions about foliations and complex
vector bundles that will be used throughout this work.

For a smooth foliation in a manifold M a transverse section is a
closed subset of M that intersects every leaf in a non-empty countable
set. Such transverse sections always exist and a finite measure on one
of them which is invariant under the holonomy of the foliation is called
a finite invariant transverse measure. We refer to [24] for a complete
discussion of this concept.

In this work we systematically consider what is known as a leafwise
structure on a foliation. The basic object that is used for such construc-
tion is the leafwise tangent bundle of a manifold M carrying a smooth
foliation F , denoted by TFM , which is defined as the subbundle of the
tangent bundle consisting of all vectors tangent to the leaves. Given
TFM we say that F is leafwise holomorphic if there is a tensor J of
type (1, 1) on TFM such that J2 = −id and if the almost complex
structure defined this way on each leaf is integrable. Given this, we
can consider the holomorphic tangent bundle denoted by T 1,0

F M and
spanned on every leaf by the vector fields ∂/∂zi coming from holomor-
phic coordinates. A leafwise Kaehler structure g on F is a Riemannian
metric on TFM whose restriction to every leaf is a Kaehler metric for
the given holomorphic structure J . This allows us to consider all basic
notions from Riemannian geometry along the leaves of a foliation when
these structures are given. In particular, we have the leafwise exterior
differential dF , the leafwise Levi-Civita connection DF and the complex
operator ∂F ; all these operators and some other geometric objects will
be considered only leafwise and hence we will denote them with the
usual symbology dropping the F as subindex.

In the rest of this work M will denote a compact manifold with a
smooth foliation F carrying a leafwise holomorphic structure. Let V
be a complex vector bundle over M which we assume to be smooth, we
will say that V is leafwise holomorphic if its restriction to each leaf is
a holomorphic vector bundle. On such V a Hermitian metric h always
determines a unique leafwise Hermitian connection D, which is defined
only along the leaves since the holomorphic structure is given in general
only leafwise. The operator D2, known as the curvature of h, defines a
leafwise V ⊗ V̄ -valued 2-form of type (1, 1) denoted by Θ(h) or symply
by Θ. Θ in turn induces at every point x ∈ M a Hermitian bilinear
map:
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Ex ⊗ T 1,0
x (X)× Ex ⊗ T 1,0

x (X)→ C
(e⊗ α, e′ ⊗ α′) 7→ Θ(e, ē′, α, ᾱ′) = Θeē′αᾱ′

And we say that (V, h) is seminegative in the sense of Griffiths when this
map is non-positive, and we call it properly seminegative in the sense
of Griffiths (at some point) when it is seminegative but not negative
definite.

Now let Ω be an irreducible bounded symmetric domain with G the
identity component of its group of isometries and K the corresponding
isotropy at a point o ∈ Ω. We will denote with g = k ⊕ m the Cartan
decomposition of the Lie algebra of G, where k denotes the Lie alge-
bra of K and m is identified with ToΩ. Under this last identification
the decomposition TC

o Ω = T 1,0
o Ω ⊕ T 0,1

o Ω induces a corresponding de-
composition mC = m+ ⊕ m−. Also recall that the Lie algebra k of K
decomposes into the sum of its semisimple part ks and its 1-dimensional
center z.

Assume that V0 is a finite dimensional complex vector space acted
upon by K, we will say that such representation is irreducible if it is
so for the representation induced on ks. When this is the case V0 has a
unique (up to scalar multiplication) K-invariant Hermitian inner prod-
uct. Such a representation of K provides a holomorphic vector bundle
over Ω defined by V = (G × V0)/K, for the diagonal action of K on
G × V0. Any such bundle is known as a homogeneous vector bundle
over Ω, and it is further called irreducible homogeneous when the rep-
resentation of K is irreducible; in this last case, there is a unique (up to
scalar multiplication) G-invariant Hermitian metric over V which will
be denoted by h0. If X is a (Kaehler) quotient of Ω, then V induces a
holomorphic vector bundle V ′ on X which is known as a locally homoge-
neous vector bundle and further called irreducible locally homogeneous
when V is irreducible.

Now assume that M carries a leafwise Kaehler structure g such
that each leaf is uniformized by a fixed irreducible bounded symmetric
domain Ω. A leafwise holomorphic complex vector bundle V over M is
called leafwise irreducible locally homogeneous when its restriction to
each leaf is an irreducible locally homogeneous vector bundle associated
to a fixed representation of K for every leaf. With this and similar
notions we sometimes replace the term leafwise by saying that a property
holds along the leaves.

Example 1. Let M , F and g be as above with Ω an irreducible bounded
symmetric domain of rank ≥ 2. Then the leafwise holomorphic tangent
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bundle T 1,0
F M is irreducible, locally homogeneous and properly sem-

inegative in the sense of Griffiths along the leaves. The same holds true
for (most) wedge powers of T 1,0

F M ; this last claim can be obtained from
the well known formulas for curvature of wedge products and by writ-
ting down the action of K on a fiber of the bundles considered to prove
irreducibility (cf. [9]).

Example 2. For M , F , g as above and Ω = Bn, the open unit ball in
Cn, the bundle T 1,0

F M is leafwise irreducible locally homogeneous but
not properly seminegative. However, it is a simple matter to show that
Sn+1TF ⊗KF is leafwise irreducible, locally homogeneous and properly
seminegative, where Sn+1TF is the n+1 symmetric power of the leafwise
holomorphic tangent bundle and KF is the leafwise canonical bundle,
(cf. [21]). This allows to obtain certain rigid properties for the rank 1
case which was not considered in [29].

If we are given two smooth foliations F and F ′ on our compact
manifold M , a smooth leafwise holomorphic equivalence between them
is defined by a diffeomorphism f :M →M which is leaf preserving and
holomorphic along the leaves.

Finally the leafwise Dolbeaut cohomology Hp,q
F (M), for a manifold

M with a leafwise holomorphic structure, is defined as in the case of
a complex manifold using leafwise differential forms and the operator
∂̄F . In particular, H1,0

F (M) is the space of leafwise (1, 0) forms which
are holomorphic (along the leaves). We refer to [24] for more details on
related constructions.

4 Sketch of the proof of the Main Theorem

From now on Ω will denote a fixed irreducible bounded symmetric do-
main and G, K, k, ks and so on will denote the objects previously
discussed.

In order to prove the Main Theorem one takes advantage of the ze-
ros for the curvature of a properly seminegative vector bundle. Since
we are dealing with symmetric spaces it should not be surprising to
be able to characterize the values for which the curvature vanishes in
terms of representations of the Lie algebra k. On the other hand, it was
remarked in [21] and [29] that highest root vectors in m+ associated to
certain Cartan subalgebras of gC realize the minimum for the holomor-
phic sectional curvature (these were called characteristic vectors in the
cited works). Furthermore, such vectors realize what is known as the
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null dimension of Ω (cf. [29]) allowing us to optimize the use of the
zeros for the curvature.

Now consider as before an irreducible homogeneous holomorphic vec-
tor bundle V over Ω carrying a G-invariant Hermitian metric. In this
setup we have the following generalization of the notion considered in
[21] and [29]:

Definition 4.1. A unitary vector v0 in a seminegative irreducible ho-
mogeneous holomorphic vector bundle V over Ω is called characteristic
if together with some ξ0 ∈ T 1,0Ω (at the same base point) it realizes the
minimum of the map (v, ξ) 7→ Θvv̄ξξ̄

The following result from [21] shows that for this extended setup we
can also describe the above distinguished vectors in terms of the Lie
algebra theory associated to Ω.

Proposition 4.2. The minimum (maximum) of the values of the map
(v, ξ) 7→ Θvv̄ξξ̄ is attained at a pair (v0, ξ0) of unitary vectors if and
only if we can choose a Cartan subalgebra h ⊂ k for g and some or-
dering for the corresponding root space decomposition such that ξ0 is a
highest root vector and v0 is a highest (resp. lowest) weight vector for
the representation of kC that defines the bundle (V, h0).

Back to our foliated setup, let M be a compact manifold with a
smooth leafwise holomorphic foliation F carrying a leafwise Kaehler
structure g that turns each leaf into a quotient of Ω, and let (V, h0) be
a leafwise seminegative irreducible locally homogeneous vector bundle
over M as described before. By projectivizing the fibers of V we obtain
a smooth leafwise holomorphic fiber bundle π: P(V ) → M . Within
this bundle we distinguish the set of all characteristic vectors with the
following:

Definition 4.3. The characteristic bundle of V is defined by:

M(V ) = {[v] ∈ P(V ) | v is a characteristic vector of V }

and we will denote with p:M(V )→M the restriction of the projection
π: P(V )→M .

The following lemma can be easily proved using the homogeneity of
the symmetric space Ω that covers the leaves of M (cf. [21]) together
with the local triviality of the foliation F .
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Lemma 4.4. M(V ) is a compact manifold with a smooth leafwise holo-
morphic foliation carrying a finite invariant transverse measure µM
such that p:M(V ) → M is a leaf and measure preserving map that
defines a smooth leafwise holomorphic fiber bundle.

As in [29] we consider the tautological line bundle associated to V
and defined by:

L(V ) = {(v, [u]) ∈ V ×P(V ) | [v] = [u] in P(V )}

Using the arguments of [29] we obtain the following results:

Lemma 4.5. The canonical map L(V )→ P(V ) defines a smooth leaf-
wise holomorphic line bundle whose restriction to each leaf is precisely
the tautological line bundle for the restriction of V to the corresponding
leaf. In particular, any Hermitian metric h on V defines a Hermitian
metric ĥ on L(V ).

Proposition 4.6. For M and (V, h0) as before there is a leafwise co-
homology class c1(L(V )) ∈ H2

F (P(V );C) such that:

c1(L(V )) =

[√
−1

2π
Θ

]
where Θ is the curvature of any leafwise connection for the smooth leaf-
wise holomorphic line bundle L(V ) → P(V ). In particular, if ρ is a
Hermitian metric on L(V ), then the first Chern form of (L(V ), ρ) lo-
cally defined by:

c1(L(V ), ρ) = −
√
−1

2π
∂∂̄ log ρi

is a representative of c1(L(V )), where ρi = ρ(ei, ei) and ei is a smooth
leafwise holomorphic non-vanishing local section of L(V ).

As in [29] we conclude from this that, when (V, h0) is seminegative
in the sense of Griffiths, θ = −c1(L(V ), ĥ0) + π∗(ω0) defines a leafwise
Kaehler structure on P(V ) where ω0 is the leafwise Kaehler form on M
coming from the metric g which is leafwise uniformized by Ω.

Finally, the principal tool in the proof of the Main Theorem is the
following vanishing theorem which generalizes the corresponding results
found in [21] and [29]. We remark that the Lemma 4.8 below constitutes
a key ingredient in the proof.

Proposition 4.7. Let M be a manifold with a smooth leafwise holo-
morphic foliation F carrying a finite invariant transverse measure and
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a leafwise Kaehler structure g which is leafwise uniformized by a fixed
irreducible bounded symmetric domain Ω, and let (V, h0) be a leafwise
irreducible locally homogeneous holomorphic vector bundle which is sem-
inegative in the sense of Griffiths. If h is a Hermitian metric over V ,
then: ∫

M(V )
(−c1(L(V ), ĥ))α ∧ θβdµM = 0

where α = rank(c1(L(V ), ĥ0)) + 1 and β is such that α + β equals the
complex dimension of the leaves of M(V ). In particular, if h is sem-
inegative in the sense of Griffiths, then:

c1(L(V ), ĥ)α = 0

on µM-a.e. leaf of M(V ).

Lemma 4.8. For any point o in M the vector space Vo ⊗ T 1,0
o L is

spanned by the set:

W = {v ⊗ ζ | [v] ∈M(V ),Θ(h0)vv̄ζζ̄ = 0}

where L is the leaf through o.

With the above results the proof of the Main Theorem, which we
ommit in this work, can be completed.

5 Rigidity for holomorphic equivalences of foli-
ations

An important consequence of the Main Theorem is the following:

Theorem A. Let M be a compact manifold and F , F ′ be smooth leaf-
wise holomorphic foliations with the same leaf dimension and carrying
leafwise Kaehler metrics g and g′, respectively, such that the leaves of
F are uniformized by a fixed irreducible bounded symmetric domain Ω.
Assume that F has a finite invariant transverse measure µ and that
either one of the following is satisfied:

1. rank(Ω) ≥ 2 and the leaves of F ′ have non-positive holomorphic
bisectional curvature, or

2. both the leaves of F and F ′ are uniformized by Bn.

If f :M → M is a smooth map that defines a leafwise holomorphic
equivalence from F onto F ′, then f is up to a constant an isometry on
µ-a.e. leaf of F .
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6 Vanishing of leafwise cohomology groups

The main theorem in this section is the following:

Theorem B. Let M and (V, h0) be as in the Main Theorem, and let F
be a smooth leafwise holomorphic complex vector bundle over M carrying
a Hermitian metric for which F is locally flat when restricted to the
leaves. Then any smooth leafwise holomorphic section σ of V ∗ ⊗ F
vanishes on µ-a.e. leaf of M .

A consequence of the above is the following:

Theorem 6.1. Let M be as in the Main Theorem with Ω an irreducible
bounded symmetric domain of rank ≥ 2 and let F be a smooth leafwise
holomorphic complex vector bundle over M carrying a Hermitian metric
for which F is locally flat when restricted to the leaves. Then any smooth
leafwise holomorphic F -valued 1-form vanishes on µ-a.e. leaf of M . In
particular, if µ is positive on open sets, then the leafwise cohomology
group H1,0

F (M) = 0.

As an application we have:

Theorem 6.2. Let M be as in the Main Theorem with Ω an irreducible
bounded symmetric domain of rank ≥ 2. Then any smooth leafwise
harmonic 1-form vanishes on µ-a.e. leaf; in particular, any such form
is identically zero for µ positive on open sets.

For our last application we recall the following remark from [29]:

Remark 6.3. Let (X, g) be a compact Kaehler manifold and assume
that its universal cover decomposes isometrically (X̃, g) ∼= Ω×Y where
Ω is a non-Euclidean de Rham factor. Such decomposition defines a
foliation with leaves of the form Ω × {y0} and it carries an invariant
transverse measure given by the volume of the factor Y . This foliation
with invariant transverse measure does not in general induces a structure
of the same sort on the manifold X; however it is a simple matter to
show that there is finite cover X ′ → X so that the foliation on X̃
descends to X ′. Moreover, being X ′ compact one can show that the
invariant transverse measure on X̃ defines a finite invariant transverse
measure over X ′. Also observe that both the foliations on X̃ and X ′

are leafwise holomorphic and carry a leafwise Kaehler structure defined
by the Kaehler metric on Ω.
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Theorem 6.4. Let (X, g) be a compact Kaehler manifold such that
(X̃, g) has as a de Rham factor an irreducible bounded symmetric do-
main Ω of rank ≥ 2. If F is a locally flat Hermitian holomorphic vector
bundle over X, then any holomorphic F -valued 1-form ω vanishes on
vectors whose lifts to X̃ are tangent to Ω. In particular, this partial
vanishing is satisfied for any holomorphic 1-form on X.

7 Further developments

The first section provides an introduction to the main ideas from the
study of the rigid properties for symmetric spaces. In particular, it
should allow the reader to understand the goals for this area of the ge-
ometry. However, a couple of problems to consider are briefly discussed.

We can obtain the same conclusion of the Main Theorem under
weaker regularity assumptions on the metrics involved, as long as we can
guarantee that the forms involved are suitable to use Stokes’ theorem.
This should prove to be useful in applications to measurable setups as
in the work of Zimmer.

In [22] the single leaf case of the Main Theorem is used, together
with a Bochner formula, to study representations of fundamental groups
of compact quotients of Ω into the isometry group of a Riemannian man-
ifold N with suitable non-positive curvature. The results in [22] have
been improved with the use of a stronger Bochner formula introduced in
[23]. An interesting problem to consider is to build the kind of results
developed in [22] and [23] by using a foliated version of the Bochner
formula introduced in [23]. This approach requires to establish the ex-
istence of leafwise harmonic maps. As noted from the results in [14]
the work that has to be done is not straightforward, since leafwise har-
monic maps are not easy to get. This is due to the lack of convergence
of the leafwise heat flow, so that a way to control its behavior has to
be used. This problem has been considered in [29] where a kind of geo-
metric superrigidity for foliations is obtained together with applications
to Riemannian manifolds. Within such setup, an interesting problem
to consider is to develop a suitable Hodge theory for foliations that al-
lows to use the leafwise vanishing theorems we consider in this work to
obtain leafwise cohomology vanishing for certain foliations; such tech-
niques have been used by Zimmer to obtain rigid properties for actions
of semisimple Lie groups.
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