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ON THE ROLE OF GROUPS IN

TOPOLOGY AND GEOMETRY ∗

R. JAMES MILGRAM 1

Abstract

In this article we develop some relationships between fundamental
concepts in geometry and topology and structures in (mostly) the
theory of finite groups. In particular, we stress the way in which
classical results in group theory relate to topology and have given
rise to new developments in homotopy theory. We describe work in
progress motivated by these relationships both in low dimensional
topology and in homotopy theory.
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1 Preliminaries on the classifying space con-
struction

The n-dimensional simplex σn is one of the most fundamental objects
in mathematics. Recall its definition:

σn = {(t1, . . . , tn) | 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ 1},

with faces
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F1 = σn ∩ {t1 = 0}
F2 = σn ∩ {t1 = t2}

...
. . .

Fn = σn ∩ {tn−1 = tn}
Fn+1 = σn ∩ {tn = 1}.

�
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�
�

F1 {t1 = 0} F2 {t1 = t2}

F3 {t2 = 1}

The simplex σ2

Let O be a collection of objects, and C be a collection of “maps”
between them with a partially defined associative multiplication on the
maps. That is to say, there is a pairing on a subset of the elements of
C × C to C so that if fg and gh are both defined, then (fg)h and f(gh)
are defined and equal. For example, in the set of complex manifolds, C
could be the collection of holomorphic maps from one to another. (Note
that the composition of two holomorphic maps is again holomorphic.)

Definition 1.1 Let (f1, . . . , fr) ∈ Cr be an ordered r-tuple of elements
of C which has the property that fifi+1 ∈ C, 1 ≤ i ≤ r − 1. Then
we call (f1, . . . , fr) an r-composable set, (C is thus the collection of all
1-composable sets).

Consider the space BC constructed out of the collection of objects
and all r-composable sets for all r ≥ 1 by taking the disjoint union∐

O
e× σo t

∐
r

∐
H

σr ×H

as H runs over all r-composable sets and making the identifications in
the relation set R that couple face identifications in the simplex with
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composition in the r-composable set (f1, . . . , fr):

(~t, (f1, . . . , fr)) ∼ ((t2, . . . , tr), (f2, . . . , fr))

if ~t ∈ F1(σr).

∼ ((t1, . . . , t̂i, . . . , tr), (f1, . . . , f̂i, fifi+1, . . . , fr))

if ~t ∈ Fi+1(σr), 1 ≤ i ≤ r − 1.

∼ ((t1, . . . , tr−1), (f1, . . . , fr−1))

if ~t ∈ Fr+1(σr),

and finally that couple r-composable sets (f1, . . . , fr) with the object er
on which fr is defined, and e0 which is the image of f1.

This space is called the classifying space of C and is a basic con-
struction in modern mathematics. There are also reduced constructions
where we take special account of identity maps, but this need not con-
cern us here.
C is always assumed to have a topology, and if none is given then the

discrete topology is assumed. Similarly for the objects. Additionally,
the simplex σr has the induced topology from that of the r-cube Ir. The
quotient space above is then given the compactly generated quotient
topology.

Remark 1.2 A special case is the situation where C is simply a space
with a continuous associative multiplication: for example a topological
group (or a discrete group) and O consists of a single point regarded
as both the domain and range of each element of C. In case Y is a
connected and based CW-complex and X = ΩY is the loop space of
Y with loop sum as its product, then BX ' Y where the symbol '
denotes homotopy equivalence. Thus, up to homotopy type, all cellular
spaces occur this way.

Examples 1.3 (a) If G is a discrete group and there is again only one
object, then BG = K(G, 1), the Eilenberg-Mac Lane space. BG is
characterized by the property that π1(BG) = G, πi(BG) = 0 for
i ≥ 2, and, consequently, BG is universal for principal G-covers,
[5].

(b) For the continuous group S1, BS1 ' CP∞.

(c) Suppose that C = D × E , then if C and D are compact CW -
complexes with unit elements 1, the reduced classifying spaces
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satisfy

B̄C = B̄D × B̄E

in the compactly generated topology.

(d) Let X = SP∞(Y ) be the infinite symmetric product of the based
space Y , given as limn(SPn(Y )) where the inclusion

SP i(Y ) ↪→ SP i+1(Y ),

is given by 〈y1, . . . , yi〉 7→ 〈y1, . . . , yi, ∗〉. Then BX = SP∞(ΣY ),
where σY is the reduced suspension of Y , [4].

(e) Suppose X is a finite simplicial complex with simplices σrir . Let
the objects O be the simplices of X, and we define C as follows:
fir,is is defined if and only if σrir is a face of σsis . The composition
fir,isfit,il is defined and equals fir,il if and only if σsis is a face of
σtit . Then BC is exactly the barycentric decomposition of X and
is thus homeomorphic to X.

2 A key connection between finite group theory
and homotopy theory

For a finite group G with G′ perfect, the “plus”-construction B+
G is

obtained by adding 2-cells and 3-cells to BG that “abelianize” its fun-
damental group without changing the integral homology of any of its
abelian covers. Thus π1(B+

G) = G/G′ and H∗(BG,A) → H∗(B
+
G ;A)

is an isomorphism for all twisted coefficients A for which the twisting
factors through Z(G/G′).

A fundamental connection between finite group theory and homo-
topy theory is based on the homotopy equivalence

(2.1) Q(S0) = lim
n 7→∞

(ΩnSn) ' ΩB
(∐

BSn

)
' Z×B+

S∞ ,

where the associative multiplication in
∐
BSn is induced from the usual

inclusions Sn × Sm ⊂ Sn+m, and where ΩnSn is the space of based
self-maps Sn → Sn. The space Q(S0) plays a key role in studying the
structure of mapping spaces. For example, note the following result.
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Remark 2.1 By definition, the (unstable) homotopy groups of Q(S0)
are the stable homotopy groups of spheres: πi(Q(S0)) = πsi (S

0) =
limn7→∞ πn+i(S

n).

Quillen used the equivalence in (2.1) to construct a splitting

(B+
GL∞(Fp))q × Coker(J)q ' Q(S0)q

for q appropriately related to p and p odd. Here the splitting is ob-
tained from the usual inclusion of Sn into GLn(Fp) and the inclusion
GLn(Fp) ⊂ Spn−1 via the action on the non-zero vectors of Fnp .

There is a second product defined on Q(S0) since the elements of
this space represent limits of (based) maps fm : Sm −→ Sm, given by
composing the maps. It ties in to the construction above via group
homomorphisms

Sn × Sm −→ Snm

given as the compositions

Sn × Sm
∆n×1
−−−→ Sn o Sm ↪→ Snm

where the inclusion of the wreath-product Sn o Sm ↪→ Snm is the usual
one. This follows from 3.2(c) and is the basis for the main results of [6].

3 Internal structure of the symmetric groups

In view of the discussion above, the internal structure of the symmetric
groups should have corresponding relations to structure in homotopy
theory. Particularly important are the maximal subgroups of Sn. These
are given by the O’Nan-Scott theorem:

Theorem 3.1 A maximal subgroup of Sn has one of the following six
forms:

(i) Sn × Sm ⊂ Sn+m.

(ii) Sm o Sk ⊂ Smk.

(iii) Sm o Sn ⊂ Smn.

(iv) Affn(p) ⊂ Spn.
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(v) G ⊂ Sn where T / G
ψ−→ L with T a non-abelian simple group but

not An, L ⊂ Aut(T ), and the associated action ψ is primitive.

(vi) (G o Sn) ·Out(G) ⊂ S|G|n−1 where G is a simple group, not An.

Remarks 3.2 (a) The loop sum in (2.1) corresponds to the subgroups
Sn × Sm ⊂ Sn+m in Theorem 3.1. (See the discussion in [6],
particularly pps. 241–243.)

(b) The “transfer” operation Q(Q(X))→ Q(X) given by

ΩnΣn(ΩnΣnX) 7→ ΩnΣnX,

using the intermediate map eval : ΣnΩnY → Y , corresponds here
to the maximal type (ii) subgroups Sk o Sn ⊂ Snk through the
following chain of equivalences.

Q(Q(S0)) ∼
∐

ESk ×Sk Q(S0)k/ ∼

=
∐
k,n

ESk × (ESn)k ×SkoSn ∗
nk/ ∼′ .

(c) In the special case of Sn, we can regard ΩnSn as the set of based
maps

Map∗(S
n, Sn),

and, as such, we can iterate mappings (f, g) 7→ f ◦ g. This gives
a second multiplication on ΩnSn, and after passing to limits, on
Q(Sn). The associated pairing here is the one

Sk × Sn
∆n×1
−−−→ Sk o Sn ↪→ Snk

defined by regarding nk points as n rows of k points. Then act by
Sk diagonally on the rows and by Sn diagonally on the columns.
The type (iii) maximal subgroups correspond to the analog of
the construction of the Dyer-Lashof operations (equivalently, the
transfer map of 3.2 (b)) for the composition product. (Again, see
[6], pps. 241–243.)

In the late 1960’s this led to the determination of the cohomology of
the classifying space of Q(S0)±1 under composition product, [6]. Using
this, Brumfiel, Madsen, and Milgram [2] analyzed the structure of the
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surgery classifying spaces BTOP and BPL and extended the work of
Sullivan on the fibers of the maps G/TOP → BTOP and G/PL→ BPL.
Among the consequences were the determination of the PL-bordism
ring as well as all possible integral characteristic classes obtained as
polynomials in the Pontrjagin classes for topological manifolds.

4 The significance of the remaining classes of
groups

In this section we discuss on the meaning of the remaining classes of
groups in the O’Nan-Scott theorem. See also [7]. In one of the great
works of mathematics in this century the finite simple groups were clas-
sified [3]. The result is that they are the

1. central quotients of the (simply connected) finite groups of Lie
type, among them the groups PSLn(q), PUn(q), the exceptional
groups G2(q), F4(q), E8(q), etc.,

2. the alternating groups,

3. the sporadic groups: 26 extraordinary finite groups the first five of
which were discovered at the end of the last century by Mathieu:
M11, M12, M22, M23, and M24.

The first interesting case is i : M12 ⊂ A12 ⊂ S12. M12 and G2(q)
with q ≡ 3, 5 mod (8) share a common 2-Sylow subgroup, and

H∗(G2(q);F2)

has a 14-dimensional aspect which we can see in its Poincaré series

PG2(q)(t) =
(1 + t3)(1 + t5)(1 + t6)

(1− t4)(1− t6)(1− t7)
(4.1)

=
1 + t3 + t5 + t6 + t8 + t9 + t11 + t14

(1− t4)(1− t6)(1− t7)
.

The cohomology ring H∗(M12,F2) and consequently the Poincaré series
for H∗(M12,F2) is determined in [1], and we have

(1− t4)(1− t6)(1− t7)PM12(t) =

= 1 + t2 + 3t3 + t4 + 3t5 + 4t6 + 2t7 + 4t8 + 3t9

+ t10 + 3t11 + t12 + t14. (4.2)
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An algebra over a field F is Cohen-Macaulay if it is free and finitely
generated over a polynomial subalgebra. We have the following result.

Theorem 4.1 ([1], [8]) H∗(M12;F2) is Cohen-Macaulay over

H∗(BG2 ;F2) = F2[d4, d6, d7]

with the numerator of the Poincaré series having dimension 14. More-
over, there is a composition

S14 → Q(BG2)
tr′−→ Q(BG2(3))→ Q(BM12)

Q(Bi)
−−−→ Q(BS12)→ Q(S0),

where the image of S14 in H∗(M12) represents the 14 dimensional fiber
generator. Here tr′ is the composition of the transfer to (Z/2)3 × S4

followed by inclusion into M12, and in π14(Q(S0)) = πs14(S0) the S14

represents an element of Kervaire invariant one.

Remark 4.2 The 2-Sylow subgroup here has the simple structure given
as the semi-direct product

(Z/4)2 : (Z/2)2 = 〈a, b〉 : 〈k, t〉,

with at = a−1, bt = b−1, ak = b describing the action of the generators
of the (Z/2)2 on (Z/4)2. In G2(q), q ≡ 3, 5 mod (8) the 2-primary
part of the maximal torus is also a copy of (Z/4)2. The Weyl group is
(Z/2)× S3, so the normalizer of the 2-part of the torus is

(Z/4)2 : (Z/2)× S3.

This extension is also part of M12 and in both groups it contains the
2-Sylow subgroup.

In the case above we had a simple group which was related to a group
of Lie type by having a map to a classifying space with plus construction
of the homotopy type of the classifying space of G2. Moreover, there
was a degree one map of the resulting fiber onto a space having the
homotopy type of a Lie group.

The fact that a Lie group is parallelizable results in a stable spherical
class, due to the following well known result:

Lemma 4.3 Let M be any stably parallelizable closed, compact
n-dimensional manifold without boundary, then some large suspension
of M , ΣkM ' Sk+n ∨W where W has dimension < k + n.
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What is striking here is the fact that the usual inclusions of G2(q) ⊂
Sn do not map this class to the class σ2, but the natural map associated
to M12 does. And that is, perhaps, the point. One is looking for more
or less natural constructions which give rise to exotic objects. Clearly
aspects of this process can be generalized. But it should be empha-
sized that currently we do not know what the results of this type of
construction are in full generality.

Remark 4.4 Let us emphasize again what seems to be happening here.
The structures we are interested in, such as elements in the image of
the stable Hurewicz homomorphism in the homology of a simple group,
already occur in the Sylow subgroups. However, it is (hopefully) the
relation of the simple group with the symmetric groups which gives rise
to the natural maps that carry these elements to stable homotopy theory
in interesting ways.

As further support for this it has been shown in my analysis of the
sporadic group M23, [9], that Hi(M23;F2) = 0 for i ≤ 5, H6(M23,F2) =
F2, and the inclusion

M23 ( S23 ↪→ S∞

on passing to classifying spaces and plus constructions takes the first
non-zero mod (2) homotopy class of B+

M23
to the 6-dimensional Kervaire

class. But there may be much more going on here than just this though
what is happening in higher dimensions is not entirely clear. The Sylow
2-subgroup of M23 is the same as that of the sporadic group McL and
that of the group of Lie type PSU4(F3) so we would, at least, expect that
the properties of PSU4(F3) would lead to further homotopy theoretic
conclusions.

Motivated partly by the remarks above, it seems that the most
promising groups to study in order to generalize what is happening here
are the groups PSUn(q) with q odd (q = 3 comes to mind in view of
the close connection between PSU4(3) and 4 of the remaining sporadic
groups).

In ongoing work I have been studying these groups with Kristin
Umland at the University of New Mexico. So far we have about fin-
ished with understanding the structure of the elementary 2-groups in
PSUn(q) and PSLn(q). This involves an analysis of the modular rep-
resentations and automorphism groups of the various hyperelementary
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groups, inductively given as the central products

H ∗Q8, H ∗D8, and H ∗ Z/4,

if H 6= Z/4, and with the single relation induces from the isomorphism

Q8 ∗Q8
∼= D8 ∗D8,

so the first groups are

Z/4, Q8, D8, D8 ∗Q8, D8 ∗D8, D8 ∗Z/4, Q8 ∗D8 ∗D8, D8 ∗D8 ∗D8.

It is interesting to note that these groups have consistently played crit-
ical roles in investigations in homotopy theory and manifold theory in
general. For example, they were critical in studying the classical classi-
fying space BSpin(n) and also play critical roles in the structure of vector
fields on spheres.

5 Some interactions of finite group theory with
low dimensional topology

The tetrahedral group, octahedral group, and icosahedral groups all are
contained in SO(3) as are the cyclic groups Z/n and the dihedral groups
D2n.
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The tetrahedron and octahedron

The two fold covering Sp(1) ∼= S3 → SO(3) lifts these groups to
their binary analogues, the binary tetrahedral group, binary octahedral
group, the binary icosahedral group, the cyclic groups again, and the
generalized quaternion groups Q4n, which consequently act freely on S3

and there are three dimensional manifolds with these as their funda-
mental groups: the quotients of S3 by the actions above.
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The classification theory for 3-dimensional closed manifolds natu-
rally bifurcates into the two cases: π1(M3) is infinite and π1(M3) is
finite – the case of Thurston’s elliptic conjecture. It is believed that
we are very near a complete understanding of the M3 with infinite π1.
However, we really know very little about the situation for π1 finite. For
example, we do not even know if the groups above are the only possible
finite fundamental groups. However, due to work of Milnor and R. Lee
we know that the only remaining possibilities are groups of the form

Z/a× Z/b× Z/c : TQ8, a, b, c coprime,

where the twisting is via the action of the first generator of Q8 as in-
version on Z/a, the second generator on Z/b and both generators on
Z/c.

In work of mine from almost 20 years ago on actions on S11 it was
shown that if two or more of a, b, c are not equal to 1, then there are
stringent constraints on the possible elements which can occur, the first
possibility being

Z/17× Z/113: TQ8.

Recently, using a result of Rubenstein, I strengthened the results above
to prove

Theorem 5.1 If one of the groups

Z/a× Z/b× Z/c : TQ8

is the fundamental group of a closed, compact 3-manifold M3, with
(2, a, b, c) mutually coprime and two or more of a, b, c greater than
1, then the universal cover of M3 is a counterexample to the Poincaré
conjecture.

In a recent paper by I. Hambleton and R. Lee it was claimed that
the known groups are the only possibilities. However, it seems there is
a serious error in the details. Nonetheless, the philosophy there seems
convincing, and the theorem above lends support to the conjecture that
none of these groups can be the fundamental group of a closed, compact
3-manifold. So it is now expected that this will be the case.

However, even in the case of cyclic groups there remains the ques-
tion of how many homeomorphically distinct lens spaces there are with
fundamental group Z/n. In the case where n = 2s3t work of Rubenstein
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shows that there is only one. However, in the remaining cases nothing
is known.

The first invariant which can be non-trivial for n involving a prime
p ≥ 5 is a Reidemeister type torsion class. Let R = Z(Z/n) be the
integral group ring. Then, setting G = AutR(Rn), n ≥ 2 this invariant
takes its values in H1(BG;Z), factored out by a small subgroup. In fact,
the result of 5.1 is a direct consequence of the following result.

Theorem 5.2 Suppose that an exotic group Z/a × Z/b × Z/c : TQ8 is
the fundamental group of a closed compact 3-manifold M3, then there is
a lens space with fundamental group Z/(2ab), Z/(2ac) or Z/(2bc) with
a non-trivial torsion invariant.

It has been widely conjectured for a long time that there are no
exotic lens spaces. However, the first critical case is clearly Z/5 where
the possible torsion invariant would be

T + T−1 − 1.

In studying whether this class can be the torsion of an exotic L5 one
runs into presentations of groups of a highly symmetric form. The first
of them corresponding to the simplest presentation associated to the
unit above is

F (x1, . . . , x5)/(x1x
−1
2 x3, x2x

−1
3 x4, x3x

−1
4 x5, x4x

−1
5 x1, x5x

−1
1 x2).

There will also be more complex relators given by the relators above
multiplied by products of commutators of the generators but always
with the properties that

1. there is an action of Z/n cyclically permuting the generators,

2. the relation set is generated by a single relator together with other
(n− 1) distinct images under the action of Z/n.

What we seem to need now are techniques which will decide when
such groups are non-trivial. I conjecture that they are always non-trivial
in the cases of interest.

This would not quite solve the problem of classification of lens spaces
but it would, at least, show that there are no exotic fundamental groups.
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6 Current Developments

In some sense what we have been discussing to this point reflects ad-
vances on ideas which have been around for some time. But recently
new ideas from younger workers notably Ulrike Tillmann at Oxford and
V. Voevodsky at Harvard and Northwestern have given us new tools
which promise to revolutionize the subject.

One of the basic groups which connects analysis, number theory and
topology is SLn(Z) the group of n× n integer matrices of determinant
one. And beyond that the next level of groups which one expects to play
a critical role in developments in the next 50 years are the mapping class
groups consisting of the groups of automorphisms of the fundamental
groups of closed 2-manifolds, Γgn,m is the set of isotopy classes of dif-
feomorphisms of the Riemann surface of genus g with n punctures and
m boundary components. The classifying spaces for these groups have
been a major objective of a lot of mathematics for perhaps the last 50
years.

In both cases there are stabilization maps. For SLn(Z) this takes
the form of the standard inclusion homomorphisms

SLn(Z) ↪→ SLn+1(Z), A→
(
A 0
0 1

)
.

For the group Γgn,m one glues in a pair of pants over a piece of one
of the boundary components.'

&

$

%& %
�
�	 �
�	

(the heavy part of the arc is glued to a corresponding arc in the first
boundary component) or, in the same way attach a torus with an open
disk Ḋ2 removed.

So it makes sense to pass to limits, obtaining Γ∞n and SL(Z).

Work of Kontsevich based on previous work of Penner some years
ago showed the existence of polynomial rings on 2-dimensional gener-
ators, Z[b1, . . . , bn], in H∗(BΓn). Also, work of E. Miller, Morita, and
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Mumford showed that H∗(BΓ0) contains a polynomial algebra on even
generators

Z[b2, b4, . . . , b2n, . . . ].

But beyond this, little was known about these spaces until about 2 years
ago. Then Ulrike Tillmann proved that BΓ∞n is an infinite loop space
which severely limits the structure it can have. In particular she proved
that it has a splitting component Q(S0). It is now suspected that the
remaining components are something like BO ×Ω2B0 producted with a
number of CP∞’s. Also, based on her work she, Maginnis and I showed
the existence of unstable torsion classes in H∗(B

5
0) and it is believed

that there are unstable torsion free classes as well. But the unstable
problem seems very complicated.

Recently, Voevodsky introduced new techniques and proved a con-
jecture of Milnor. From this Charles Weibel [10] obtained the structure
of K∗(Z), the homotopy groups of B+

SL(Z) as follows:

K8n(Z) = (odd) for n ≥ 1

K8n+1(Z) = Z⊕ Z/2⊕ (odd) for n ≥ 1

K8n+2 = Z/2⊕ (odd)

K8n+3(Z) = Z/16⊕ (odd)

K8n+4(Z) = (odd)

K8n+5 = Z⊕ (odd)

K8n+6(Z) = (odd)

K8n+7(Z) = (Z/wi)⊕ (odd), i = 4(n+ 1)

where wi is the largest power of 2 dividing 4i.

In fact Luke Hodgkin gives the following description: Let JK(Z) be
defined as the fiber of the composite map

c(ψ3 − 1) : BO
ψ3−1
−−−−→ BSpin

c−→ BSU.

Then localized at the prime two JK(Z) is BGL(Z)+.

Thus we are looking at what promises to be a very exciting time in
this area. I eagerly await the subsequent developments.
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