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UNIQUE FACTORIZATION IN

CARTESIAN PRODUCTS ∗
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Abstract

In this paper we partially answer the following question. “If the
topological space H can be decomposed as the Cartesian product
H = A×X, when is this factorization unique?”
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1 Introduction.

Suppose that topological space H can be decomposed in the Cartesian
product H = A×X. When is this factorization unique? That is, given
four topological spaces A,B,X and Y such that A×X ∼= B× Y , when
is A homeomorphic to B and X homeomorphic to Y ? This is a very
old question in topology without a complete answer so far, and results
which give conditions for the answer to be positive are known as unique
factorization laws. The main purpose of this paper is to present several
unique factorization laws all of which are deduced from the following
key lemma (proved in section 2).

Lemma 1.1 Let A,B,X and Y be four topological spaces which satisfy
that A×X ∼= B×Y under a homeomorphism g. Assume that for every
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a ∈ A, there exists a point b ∈ B such that g({a} ×X) ⊆ {b} × Y ; and
that for every b ∈ B, there exists a point a ∈ A such that {b} × Y ⊆
g({a} ×X); then A ∼= B and X ∼= Y .

A unique factorization law is trivially obtained if a least two of four
spaces A,B,X and Y are degenerate (that is, with cardinality at most
one). Thus, by space we mean non-degenerate topological space.

There are several non-trivial unique factorization laws. For instance
a space H is said to be prime if it cannot be decomposed into a Carte-
sian product of two or more spaces which are not singletons nor home-
omorphic to H. Thus “no polyhedron of any dimension can have more
than one decomposition into a product of (non-degenerate) prime sets
of dimension not exceeding 1” [2] and “no closed n-dimensional mani-
fold (that is, a space locally homeomorphic to Euclidean n-dimensional
space) can have more than one decomposition into a product of (non-
degenerate) prime sets of dimension not exceeding 2” [3]. There are also
many products with no unique factorization.

Example 1.2 No two of the unit intervals (0,1), [0,1) and I = [0, 1] in
the real line R (endowed with the standard topology) are homeomor-
phic; however, it is easy to prove that the following three products are
homeomorphic: (0, 1)× [0, 1), [0, 1)× [0, 1) and I× [0, 1). Another exam-
ple was found by R. H. Fox in 1947 (see[5]). He constructed two closed
non-homeomorphic subsets AF and BF of R2 such that AF×I ∼= BF×I.

On the other hand, a recent factorization law has been given by
E. Behrends and J. Pelant in [1]: Let H be a compact, connected,
Hausdorff space such that the only continuous mappings from H to H
are the constant and the identity; then for arbitrary compact Hausdorff
spaces A and B, the law A×H ∼= B ×H ⇔ A ∼= B holds. Finally, the
proof of Lemma 1.1 is presented in section 2, together with definitions
and background material. The applications of Lemma 1.1 are presented
in sections 3 and 5 as unique factorization laws (we consider Theorems
3.1, 3.2, 5.3 and 5.5 to be the main results of this paper). And section
4 is dedicated to prove some preliminary results which are used in the
proof of Theorems 5.3 and 5.5.

2 Basic Definitions and Lemmas.

We begin this section by showing Lemma 1.1.
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Proof of Lemma 1.1: Given a ∈ A, there exist elements b ∈ B and
c ∈ A such that {a}×X ⊆ g−1({b}×Y ) ⊆ {c}×X. This implies a = c
(X is non-empty), so that g({a} ×X) = {b} × Y and X ∼= Y .

Now define R : A → B by R = ψ ◦ g ◦ ϕ−1, where ϕ : A ×X → A
and ψ : B × Y → B are the projections. Given a ∈ A, from the
preceding paragraph, we obtain R(a) = ψ◦g◦ϕ−1(a) = ψ◦g({a}×X) =
ψ({b} × Y ) = b. We can also show that for every b ∈ B, there exists a
unique a ∈ A such that R(a) = b. Therefore R : A→ B is a one-to-one
and onto function. On the other hand, ϕ and ψ are continuous and
open mappings, so R is also a continuous and open mapping, so that
R : A→ B is a homeomorphism.

Recall now some definitions taken from [4], [6], [7] and [8].

Definition 2.1 Let H and X be arbitrary spaces, then:

1. When X is connected, x ∈ X is a cut point if X − {x} is not
connected;

2. H is totally disconnected if every connected set contained in H is
degenerate;

3. X is pathwise connected if for all x, z ∈ X there exists a path (a
continuous mapping f from I into X) such that f(0) = x and
f(1) = z;

4. H is totally pathwise disconnected if the only paths in H are the
constant;

5. The pair of points x, z ∈ X is arcwise connected if x = z or if
there exists an arc Υ ⊆ X with end points x and z;

6. A continuum is a connected and compact space;

7. A Peano continuum is a metrizable and locally connected contin-
uum;

8. H is punctform if every continuum subset D ⊆ H is a singleton;

9. H is said to be KC if every compact subset D ⊆ H is closed;

10. The function f : H → X is said to be a perfect mapping if it is
a closed, continuous and surjective mapping such that for every
x ∈ X, f−1(x) is compact;
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11. The subset E ⊆ 2X is said a 2-cover of X if for all x, z ∈ X there
exists D ∈ E such that x, z ∈ D.

We also need three basic lemmas.

Lemma 2.2 Given two connected spaces X and Y , the product X × Y
has no cut points.

Proof: Recalling that X and Y are non-degenerate, the lemma follows
from the arguments in Theorem 46.II.11 of [7 page 137].

Lemma 2.3 Let f : X → Y be a continuous, closed and onto mapping
and let X be a Peano continuum. Then Y is also a Peano continuum.

Proof: Since X is T1 and f is closed, Y is T1. Thus, given y ∈ Y ,
the set f−1(y) ⊆ X is closed and; therefore, compact. Hence f is a
perfect mapping and the result now follows from the Hahn-Mazurkiewicz
theorem and the Hanai-Morita-Stone theorem; see [6].

Thus Peano continua are preserved under perfect mappings. On the
other hand, in Lemma 2.3, since f is a continuous mapping, it sends
closed (compact) subsets of X to compact subsets of Y ; thus, it is
possible to change the condition that f be closed for the condition that
Y be a KC space. This yields the following lemma.

Lemma 2.4 Let f : X → Y be a continuous mapping. If X is a Peano
continuum and Y is a KC space, then f(X) ⊆ Y is a closed Peano
continuum.

Finally, we introduce a new definition inspired by Theorem 3.2 and
Example 3.5.

Definition 2.5 Two points x and z are closed-Peano-connected in the
space X (written x

p∼ z) if x = z or if there exists a closed Peano
continuum D ⊆ X such that x, z ∈ D. Moreover, X is closed-Peano-
connected if it has a closed 2-cover consisting of Peano continua (that
is, every pair of points in X is closed-Peano connected).

In section 4 we analyze properties of closed-Peano-connectedness.
For example, we show that

p∼ is an equivalence relation. Therefore, the
following is well defined.

Definition 2.6 The closed-Peano-components of the space X are the
equivalence classes of

p∼ in X.
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3 Unique Factorization Laws.

There exist many spaces which satisfy the hypotheses of Lemma 1.1.
In this section we present two main unique factorization laws deduced
from this lemma and their applications.

Theorem 3.1 Let A,B,X and Y be spaces such that A×X ∼= B × Y
and let Ξ be a topological property that satisfies:

1. Ξ is invariant under continuous mappings,

2. X and Y have property Ξ,

3. every non-empty subset of A with property Ξ is a singleton,

4. B satisfy the same hypothesis than A.

Then A ∼= B and X ∼= Y .

In Theorem 3.1, Ξ may stand for connectedness, σ− connectedness,
compactness plus connectedness, pathwise connectedness, etc.

Proof: Let g be a homeomorphism from A ×X onto B × Y and let
ψ : B × Y → B be the projection (ψ is a continuous mapping). Given
a ∈ A, since X is non-empty and has property Ξ, (ψ ◦ g)({a} ×X) ⊆ B
is also non-empty and has property Ξ. Hence, by condition 4 in 3.1,
(ψ ◦ g)({a} ×X) = {b} with b ∈ B, so g({a} ×X) ⊆ ψ−1(b) = {b} × Y .
We can likewise prove that for every b ∈ B, there exists a point a ∈ A
such that {b} × Y ⊆ g({a} ×X). The result follows then from Lemma
1.1.

Theorem 3.2 Let A,B,X and Y be spaces such that A×X ∼= B × Y .
Suppose that A and B are T1 and there exists a topological property Θ
which satisfies:

1. Θ is invariant under perfect mappings and implies compactness,

2. X and Y both have a closed 2-cover with property Θ,

3. Every non-empty closed subset of A with property Θ is a singleton,

4. B satisfy the same hypothesis than A.

Then A ∼= B and X ∼= Y .
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In Theorem 3.2, a space H has the property Θ if:

i) H is compact, connected and Hausdorff;

ii) H is compact, pathwise connected and metrizable;

iii) H is compact, σ-connected and metrizable;

iv) H is a Peano continuum.

In order to prove Theorem 3.2 we need the following.

Lemma 3.3 Let Θ be a topological property that satisfy condition 1
in Theorem 3.2, that is, invariant under perfect mappings and implies
compactness. Let ψ : B × C → B be the projection. If D ⊆ B × C
is closed and has property Θ, then ψ(D) is closed in B and also has
property Θ.

Proof: Let ϕ : B × C → C be the projection; then ϕ(D) is compact
because D is compact. On the other hand, it is easy to check that the
restriction ψ |B×ϕ(D) is the projection mapping from B × ϕ(D) to its
first factor B so that ϕ |B×ϕ(D) is a continuous closed mapping (see [4]
and [6]). Moreover, since D ⊆ B×ϕ(D) is closed, the restriction of ψ to
D, ψ |D: D → ψ(D) ⊆ B is also a continuous, closed, and onto mapping
such that ψ | −1

D (b) = D ∩ ({b} × ϕ(D)) is compact for every b ∈ ψ(D).
Hence ψD is a perfect mapping and the set ψ(D) = ψ |B×ϕ(D) (D) =
ϕ |D (D) has the property Θ and is closed in B.

Proof of Theorem 3.2: Let g be a homeomorphism from A × X
onto B × Y and let ψ : B × Y → B be the projection. Since A is T1

given a ∈ A the set E = g({a} ×X) ⊆ B × Y is closed, non-empty and
has a closed 2-cover with property Θ.

We claim that ψ(E) is a singleton. Take s ∈ E and let b = ψ(s).
Then we have for every t ∈ E a closed subset D ⊆ E with property
Θ such that s, t ∈ D. Since D is also closed in B × Y , we deduce,
applying Lemma 3.3, that ψ(D) is closed in B and has property Θ.
Therefore, by condition 4, ψ(D) = ψ(t) = b, so that ψ(E) = b and
E ⊆ ψ−1(b) = {b}×Y . Thus for every a ∈ A there exists a point b ∈ B
such that g({a} ×X) ⊆ {b} × Y ; we can likewise prove that for every
b ∈ B there exists a point a ∈ A such that {b} × Y ⊆ g({a} ×X). The
result then follows from Lemma 1.1.

There are many applications of the previous theorems.
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Example 3.4 LetX and Y be connected spaces, and let A,B be totally
disconnected spaces. Then the law A×X ∼= B×Y ⇔ A ∼= B and X ∼= Y
holds.

We can change the pair of properties (connected, totally discon-
nected) by (continua, punctform) or (pathwise connected, totally path-
wise disconnected), in Example 3.4, and deduce other unique factoriza-
tion laws. Even so, we cannot apply properties such as Hausdorff or
metrizable in Theorem 3.1, because they are not invariant under con-
tinuous mappings. In this case we should use Theorem 3.2. We present
an example using Peano continua.

Example 3.5 Let X and Y be closed-Peano-connected spaces, and let
A,B be T1 spaces such that every closed Peano continuum contained
in A (or B) is a singleton. Then the unique cancellation law A ×X ∼=
B × Y ⇔ A ∼= B and X ∼= Y holds.

On the other hand, Example 3.4 requires that both A and B be
totally disconnected. We may weaken this condition as follows.

Theorem 3.6 The unique factorization law A×X ∼= B × Y ⇔ A ∼= B
and X ∼= Y holds when X and Y are connected spaces, X has a cut
point, A is totally disconnected and B is an arbitrary space.

Proof: Let g be a homeomorphism from A × X onto B × Y . We
claim that B is totally disconnected. Suppose B has a non-degenerate
connected component E . By Lemma 2.2, E×Y is a connected component
of B × Y without cut points. On the other hand, since A is totally
disconnected, for each a ∈ A the set {a}×X is a connected component
of A×X. Hence there exists a point a ∈ A such that g({a}×X) = E×Y .
But this is a contradiction because X has a cut point. Thus B is totally
disconnected and the result follows from Example 3.4.

We can likewise change the pair of properties (connected, totally
disconnected) for (continua, punctform) or (pathwise connected, totally
pathwise disconnected) in the last theorem. Moreover, in section 5, we
are going to relax the hypotheses of Example 3.5 to require that A is
a T1 space, every closed Peano continuum contained in A is a singleton
and B is an arbitrary space. Thus, the last two sections of this paper
are dedicated to improve Example 3.5.
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We will argue as in Theorem 3.6, but we need first to show that
there exist closed-Peano-components (being closed-Peano-connected an
equivalence relation), and that closed-Peano-components are preserved
under Cartesian products (that is, given a closed-Peano-connected space
Y , a set E ⊆ X is a closed-Peano-component of X if and only if E × Y
is also a closed-Peano-component of X × Y ).

4 Closed-Peano-Connectedness.

In this chapter we analyze the main properties of the closed-Peano- con-
nectedness. We begin by noting the following. Since two points in a non-
degenerate Peano continuum can be joined by a closed arc and every
arc is a Peano continuum, we deduce an alternative characterization.

Lemma 4.1 The points x and z are closed-Peano-connected in the space
X if x = z or if there exists a closed arc Υ ⊆ X with end-points x and
z.

Warning: one should be careful when working with closed-Peano-
connectedness. Indeed, taking the space X and a proper subset E ⊂ X,
if a pair of points x, z ∈ E are closed-Peano-connected in E, then x and
z are arcwise connected in X, but they are not necessarily closed-Peano-
connected in X (unless E is closed in X); that is, there exists a closed
arc Υ ⊆ E with end points x and z, but this arc may not be closed in
X. Hence we must always specify which is the base space where two
points are closed-Peano-connected. On the other hand, taking a closed
arc Υ ⊆ X, since Υ is T1, every singleton contained in Υ is closed in X.
Thus, from Lemma 4.1 we deduce the following.

Lemma 4.2 Let x, z ∈ X be different points such that x
p∼ z. Then the

sets {x}, {z} ⊆ X are closed. Moreover, every closed-Peano-connected
space is T1.

On the other hand, from Lemmas 2.4 and 4.1 we obtain the following
sequence of implications (x and z are different points in the space X).
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X is a Peano Continuum

⇓
x and y are
closed-Peano-
connected in X


=⇒ x and y are arcwise connected

⇓
⇐ +KC x and y are pathwise connected.

We present now the main properties of closed-Peano-connectedness.

Theorem 4.3 The relation of being closed-Peano-connected is an equiv-
alence relation.

Proof: Clearly
p∼ is reflexive and symmetric. Let a, b and c be different

points in the space X such that a
p∼ b and b

p∼ c. Thus there exist
closed arcs Υ1,Υ2 ⊆ X whose end-points are a, b and b, c respectively.
Therefore, we can construct a continuous and surjective mapping f :
I → Υ1 ∪Υ2 ⊆ X.

Now, let D ⊆ Υ1 ∪Υ2 be compact. Since Υ1 ⊆ X is closed, D ∩Υ1

is compact; and since Υ1 is KC, we get that D∩Υ1 is closed in both Υ1

and X. Similarly, D ∩ Υ2 ⊆ X is closed. Then D ⊆ Υ1 ∪ Υ2 is closed
as well, and so (Υ1 ∪Υ2) is KC. Hence Υ1 ∪Υ2 ⊆ X is a closed Peano
continuum (apply Lemma 2.4) with a, c ∈ Υ1 ∩Υ2; and a

p∼ c.

Theorem 4.4 Let f : X → H be a continuous, closed and onto map-
ping. If X is closed-Peano-connected, then so is H.

Proof: Given a, b ∈ H, there exist points s, t ∈ X and a closed arc
Υ ⊆ X such that f(s) = a, f(t) = b and s, t,∈ Υ. Then f |Υ: Υ→ H is
a continuous and closed mapping, so f(Υ) = f |Υ (Υ) ⊆ H is a closed
Peano continuum (apply Lemma 2.3) such that a, b ∈ f(Υ). Thus, H is
closed-Peano-connected.

Theorem 4.4. says that closed-Peano-connectedness is invariant un-
der continuous closed mappings; moreover, closed-Peano-connectedness
is also invariant under topological products, as the following theorem
states.

Theorem 4.5 X × Y is closed-Peano-connected if and only if X and
Y are both closed-Peano-connected spaces.
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Proof: Necessity: Let x, z ∈ X be two different points and let ϕ :
X × Y → X be the projection map. Take s ∈ Y . Then there exists a
closed Peano continuum D ⊆ X × Y such that (x, s), (z, s) ∈ D. By
Lemma 3.3, ϕ(D) ⊆ X is a closed Peano continuum with x, z ∈ ϕ(D);
this means that x

p∼ z. Likewise, Y is closed-Peano-connected.

Sufficiency: Given (x, s), (z, t) ∈ X × Y , there exists a closed arc
Υ ⊆ X with end points x and z. But X × {s} is closed in X × Y
because Y is a T1 space (see Lemma 4.2), so that Υ × {s} is closed
in X × Y and (x, s)

p∼ (z, s). Likewise, (z, s)
p∼ (z, t). Finally, from

Theorem 4.3, (x, s)
p∼ (z, t).

Another consequence of Theorem 4.3 is that we may consider the
closed-Peano- components in Definition 2.6. Using Lemma 4.1, we may
characterize these components as follows.

Lemma 4.6 The closed-Peano-component Cx of a point x ∈ X is the
set composed by the point x and all points z ∈ X such that there exists a
closed arc Υ ⊆ X with end points x and z, that is, Cx = {x} ∪ {z ∈ X |
there exists a closed arc Υ ⊆ X with end points x and z}.

Using Lemma 4.2, we may detect a great difference between non-
degenerate and degenerate closed-Peano-components:

Lemma 4.7 Every non-closed singleton is itself a closed-Peano- com-
ponent.

Lemma 4.8 If every closed-Peano-component of the space X is non-
degenerate, then X is T1.

Finally, closed-Peano-components act like connected components
under Cartesian products.

Theorem 4.9 Let Y be a closed-Peano-connected space and let X be
an arbitrary space. Then X is T1 and {Ek}k∈K are its closed- Peano-
components if and only if {Ek×Y }k∈K are the closed-Peano -components
of X × Y .

Proof: Necessity: Let ϕ : X×Y → X be the projection and let k ∈ K.
Since X and Y are T1 and any two points of Ek are closed-Peano-
connected in X, we may deduce (reasoning as in Theorem 4.5, suffi-
ciency), that every pair of points of Ek × Y is closed-Peano-connected
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in X×Y . If Ek×Y is not a closed-Peano -component, then there exists
a closed arc Υ ⊆ X × Y such that (Ek × Y ) ∩Υ 6= ∅ and Υ 6⊆ Ek × Y.
Hence ϕ(Υ) ⊆ X is a closed Peano continuum (by Lemma 3.3) and,
moreover, Ek = ϕ(Ek × Y ), Ek ∩ ϕ(Υ) 6= ∅ and ϕ(Υ) 6⊆ Ek, which is a
contradiction.

Sufficiency: Given k ∈ K, since any two points of Ek×Y are closed-
Peano-connected in X × Y , we conclude (arguing as in Theorem 4.5,
necessity), that every pair of points of Ek are closed-Peano-connected
in X. If Ek is not a closed-Peano-component, there exists a closed arc
Υ ⊆ X such that Ek ∩ Υ 6= ∅ and Υ 6⊆ Ek. Taking now a closed arc
T ⊆ Y (Y is non-degenerate), we deduce that Υ × T ⊆ X × Y is a
closed Peano continuum, (Ek × Y )∩ (Υ× T ) 6= ∅ and Υ× T 6⊆ Ek × Y ,
a contradiction. On the other hand, since Y is non-degenerate, every
closed-Peano-component of X ×Y is non-degenerate and thus X ×Y is
T1 (by Lemma 4.8). But X × {y} ⊆ X × Y with y ∈ Y , so X is T1 as
well.

When working in non-Hausdorff spaces, the arcwise connectedness
property is not invariant under continuous mappings and the relation
of being arcwise connected is seldom an equivalence relation (see [4], [6]
and [8]). However, if the arcs in definition 2.1.5 are required to be
closed subsets of X (recall definition of closed-Peano-connectedness),
then we obtain an equivalence relation (the relation of being closed-
Peano-connected). Moreover, the closed-Peano-connectedness is invari-
ant under continuous closed mappings as well. On the other hand, we
can now relax the hypotheses in Example 3.5.

5 Applications of Closed-Peano-Connectedness

In this section we present some applications of the above theorems.

Theorem 5.1 Let A,B,X and Y be spaces such that A×X ∼= B×Y . If
X and Y are closed-Peano-connected; A is T1 and every closed-Peano-
component of A(or B) is a singleton; then A ∼= B and X ∼= Y .

Proof: Note that B×Y is T1 because so are A and X. But B×{y} ⊆
B × Y with y ∈ Y , so B is T1 as well. On the other hand, it is easy
to prove that the three following propositions are equivalent in the T1

space H:
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(i) every closed-Peano-component of H is a singleton,

(ii) every closed Peano continua contained in H is a singleton,

(iii) H contains no closed arcs.

Indeed, (i) implies (ii) by definition, (ii) implies (iii) by Lemma
4.1, and finally, (iii) implies (i) by Lemma 4.6. Hence, the theorem
conclusion follows then from Example 3.5.

The following example shows that the condition that A is T1 cannot
be removed from the hypotheses in Theorem 5.1.

Example 5.2 Let A be any countable space for which every singleton
{x} ⊆ A is not closed. Since I is compact, the projection ϕ : A×I → A
is a closed mapping (see [4]), and no singleton contained in A × I is
closed. Then, from lemma 4.7, every closed-Peano-component of A is
a singleton, and similarly for A × I. On the other hand, Iw is clearly
closed-Peano- connected and (A×Iw) ∼= (A×I×Iw) but A 6∼= (A×I).

Now, we dedicated the last part of this paper to improve Theorem
5.1 using the results of section 3, in particular Theorems 3.2 and 3.6.

Theorem 5.3 Let X and Y be separable metric, pathwise connected
spaces with dim (X) ≤ dim (Y ) <∞, and let A be a T1 space containing
no closed arcs. Then, the law A ×X ∼= B × Y ⇔ A ∼= B and X ∼= Y
holds for any arbitrary space B.

Proof: Let g be a homeomorphism from A × X onto B × Y . Since
X and Y are KC,X and Y are closed-Peano-connected. Moreover,
proceeding as in Theorem 5.1, we deduce that B is T1.

Now then, we claim that every closed-Peano-component of B is a
singleton. Indeed, suppose, on the contrary, that E ⊆ B is a non-
degenerate closed-Peano-component. Then there exists a closed arc Υ
contained in B such that Υ ⊆ E . Furthermore, by Theorem 4.9, E × Y
is a closed-Peano-component of B × Y . On the other hand, since A
contains no closed arcs (by Theorem 4.9 and the proof of Theorem 5.1)
{{a} ×X}a∈A are the closed-Peano-components of A×X. Then there
exists a point a ∈ A such that g({a}×X) = E×Y . Hence dim (X) = dim
(E ×Y ) ≥ dim (Υ×Y ) = 1+ dim (Y ) (see [9]), which is a contradiction
because dim (X) ≤ dim (Y ) <∞. Thus every closed-Peano-component
of B is a singleton and the result follows from Theorem 5.1.
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We introduce a new definition.

Definition 5.4 In a closed-Peano-connected space H, z ∈ H is a Peano-
cut-point if H − {z} is not closed-Peano-connected.

Theorem 5.5 Let A,B,X and Y be spaces such that A×X ∼= B × Y .
Assume that X and Y are closed-Peano-connected, X has a Peano-cut-
point and A is T1 containing no closed arcs. Then A ∼= B and X ∼= Y .

Proof: Proceed as in Theorem 3.6, applying Theorems 4.9 and 5.1.

We consider Theorems 5.3 and 5.5 to be the main applications of
Theorem 3.2. We next present some examples deduced from Theorem
5.3. Corollary 5.6. Let A be a T1 space containing no copies of R and
let H be a separable metric, pathwise connected and finite dimensional
space. Then, for any arbitrary space B, the factorization law A×H ∼=
B ×H ⇔ A ∼= B holds.

Corollary 5.6 The Factorization law A×H ∼= B ×H ⇔ A ∼= B holds
when H is a separable metric, pathwise connected and finite dimensional
space; A is a T1 space containing no copies of R; and B is an arbitrary
space.

Proof: Since every arc contains a copy of R, A contains no closed
arcs, and the result follows then from Theorem 5.3.

Using the Example 1.2 of this paper, we deduce the following.

Example 5.7 The space X contains no copies of R.

⇓ +T1 ⇑
For every A ⊆ X and every space B, the unique

Factorization law A× [0, 1) ∼= B × [0, 1)⇔ A ∼= B holds.

Proof: [⇓]. In this case we assume X is T1. Thus A is also a T1 space
containing no copies of R and the result follows from corollary 5.6.
[⇑]. Suppose that X contains a copy of R. Then we can find a set
A ⊆ X homeomorphic to R. Hence A 6⊆ I and A × [0, 1) ∼= I × [0, 1)
according to the Example 1.2, a contradiction.

From Fox’s example (see Example 1.2), we can similarly show the
following.
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Example 5.8 The space X is T1 and contains no copies of R.

⇓
For every A ⊆ X and every space B, the unique
factorization law A× I ⊆ B × I ⇔ A ⊆ B holds.

⇓
X contains no copies of R2.

In a forthcoming paper [10] we show that the converse to the first
implication is not valid. We conjecture, however, that the converse of
the second implication is true when X is a metric space.

Eduardo Santillán
Department of Mathematics and Statistics
York University
4700 Keele Street
North York M3J 1P3, Ontario
Canada.
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