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A CONJECTURE ON
CYCLE-PANCYCLISM IN
TOURNAMENTS *

HORTENSIA GALEANA-SANCHEZ ! SERGIO RAJSBAUM 2

Abstract

Let T be a Hamiltonian tournament with n vertices and v a Hamil-
tonian cycle of T. In previous works we introduced and studied
the concept of cycle-pancyclism to capture the following ques-
tion: What is the maximum intersection with v of a cycle of
length k7 More precisely, for a cycle Cj of length k in T' we
denote Z,(Cx) = |A(y) N A(Cy)|, the number of arcs that v and
Ci have in common. Let f(k,T,v) = max{Z,(Cy)|Cy C T} and
f(n, k) = min{f(k,T,v)|T is a Hamiltonian tournament with n
vertices, and v a Hamiltonian cycle of T'}. In previous papers we
gave a characterization of f(n,k). In particular, the characteri-
zation implies that f(n,k) > k — 4. The purpose of this paper is
to conjecture that for any vertex v there exists a cycle of length
k containing v with f(n,k) arcs in common with . We present
various particular cases in which this equality holds.

1991 Mathematics Subject Classification: 05C20, 05C38.
Keywords and phrases: Graph Theory, Directed Graphs, Tournaments,
Pancyclism.

1 Introduction

Recall that a tournament is a digraph in which each pair of vertices
is connected by exactly one arc, that is, a complete asymmetric di-
graph. Quoting from the classical textbook by Behzad, Chartrand and
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Lesniak-Foster [2] (pp. 353), among the various classes of digraphs, the
tournaments are probably the most studied and most applicable. The
book by Moon [8] treats these digraphs in great detail. The book by
Robinson and Foulds [9], and the book [2] itself dedicate one chapter to
tournaments.

Pancyclism is a classical subject in the study of tournaments; it has
been treated in textbooks (e.g. [2]) and in many papers (e.g. [1, 3]).
Two types of pancyclism have been considered. A tournament 7T is
vertex-pancyclic if given any vertex v there are cycles of every length
containing v. Similarly, a tournament T' is arc-pancyclic if given any
arc e there are cycles of every length containing e. It is well known,
and perhaps surprising, that if a tournament has a cycle going through
all of its vertices (i.e. it has a Hamiltonian cycle or the tournament is
Hamiltonian) then it is vertex-pancyclic. This result was first proved
by Moon [7], and a proof by C. Thomassen can be found in [2] pp. 358.
It is easy to see that a vertex-pancyclic tournament is not necessarily
arc-pancyclic.

In a previous paper, [4], we introduced the concept of cycle-pancyclism
to try to understand in more detail the structure of a pancyclic tour-
nament; to explore how are the cycles of the various lengths positioned
with respect to each other. We considered questions such as the follow-
ing. Given a cycle C of a tournament T with n vertices, what is the
maximum number of arcs which a cycle of length k contained in C' has
in common with C? In [4, 5, 6] we discovered that, for every k, there is
always a cycle of length k, with its vertices contained in C', and all of
its arcs contained in C' except for at most 4: “almost” completely con-
tained in C'. This result implies that for any given Hamiltonian cycle v,
of T, there is a cycle v,—1 of length n — 1 contained in ~, with at most
4 edges not in ,. By considering the subtournament of 7" with n — 1
vertices induced by 7,1, we can repeat this argument and obtain cy-
cles Yn—2, ¥n—3, - - ., such that each ~; is “almost” completely contained
n yiq1.

In this paper we suggest —and present some evidence— that a similar
result may hold, even if we add the requirement that the cycle “almost”
completely contained in C passes through a specified vertex. Informally,
assume that a Hamiltonian cycle v of a tournament 7', and a vertex 0
are given, and we ask what is the maximum number of arcs that v and
a cycle of length k going through 0 have in common. This kind of result
would considerably strengthen the vertex-pancyclism classical result.

We proceed with a formal description of the problem. Let T be a
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Hamiltonian tournament with vertex set V' and arc set A. Assume with-
out loss of generality that V' = {0,1,...,n—1}and v = (0,1,...,n—1,0)
is a Hamiltonian cycle of T'. Let C}, denote a directed cycle of length k.
For a cycle Cj, we denote Z,(Cy,) = |A(v)NA(Cy)|, or simply Z(C},) when
v is understood, the number of arcs that v and C}, have in common. Let
f(k,T,v) = max{Z,(Cy)|Cy, C T} and f(n,k) = min{f(k,T,7)|T is a
Hamiltonian tournament with n vertices, and « a Hamiltonian cycle of
T}. In [4, 5, 6] we gave a characterization of f(n,k):

e f(n,3) =1, f(n,4) =1 and f(n,5) =2 if n # 2k — 2;
e f(n,k) =k —1if and only if n = 2k — 2.
For n > 2k —4 and k > 5,
e f(nyk)=k—2ifandonly if n #2k—2andn =%k (mod k—2);
e f(n,k)=k—3ifand only if n Zk (mod k — 2).
For n < 2k — 5,
o f(n,k)=k—4.

That is, we showed that there is always a cycle C, almost completely
contained in ; except for at most 4 arcs. The purpose of this paper is to
conjecture that the same results hold if we in addition require that the
cycles pass through a fixed vertex; that is, that for any vertex v there
exists a cycle of length k containing v with f(n, k) arcs in common with
~. As evidence for the conjecture, we present various particular cases
in which this equality holds.

More precisely, for a vertex v of a Hamiltonian tournament 7T with
n, let }

f(k,T,~v,v) = max{Z,(Cy)|C C T},
for short denoted sometimes f (n,k,T), and to stress that T has n
vertices. Let f(n, k) = min{f(k,T,%v)\T, v € T, and v a Hamil-

tonian cycle of T'}. Clearly, f(n,k) < f(n,k). We conjecture that

f(n, k) = f(n, k).

We know that the conjecture is true in the following particular cases.
When

o k=23,4,5,6;

o n=2k—22k—3,2k—4;
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er=k—1k—2 wheren—k+1=r (modk—2).
The proofs are identical to the ones in [4], except for the proof of

case r = k — 2, which is similar, and the case k = 6 which is new. For
completeness we include all the proofs here.

2 Preliminaries

In the rest of this paper we consider an arbitrary tournament 7' with
n vertices, with some fixed vertex 0, and a Hamiltonian cycle v =
(0,1,...,n—1,0).

A chord of a cycle C' is an arc not in C' with both terminal vertices
in C. The length of a chord f = (u,v) of C, denoted I(f), is equal
to the length of (u,C,v), where (u,C,v) denotes the uv—directed path
contained in C. We say that f is a c-chord if I(f) = ¢ and f = (u,v)
is a —c-chord if I(v, C,u) = c. Observe that if f is a c-chord then it is
also a —(n — ¢)-chord.

In what follows all notation is taken modulo n.

For any a, 2 < a <n — 2, denote by ¢, the largest integer such that
a-+ty(k—2) <n—1. The important case of ¢;_; is denoted by ¢ in the
rest of the paper. Let r be defined as follows: r =n — [k — 1 +t(k —2)].

Notice the following facts.

e If a <b, then t, > tp.
o t>0.
e 2<r<k-1.

Lemma 2.1 If the a-chord with initial vertex 0 is in A, then at least
one of the two following properties holds.

(i) f(n,k,T)>k—2.
(ii) For every 0 <1 <t,, the a+ i(k — 2)-chord with initial vertex 0 is
in A.
Proof:  Suppose that (ii) in the lemma is false, and let
j=min{i € {1,2,...,t,}|(a+i(k —2),0) € A},
then
Cr = (0,a+(j=1)(k=2))U{a+(i—1)(k=2),, a+j(k=2))U(a+j(k—2), 0)

is a cycle such that Z(Cy) = k — 2 with 0 € Cy, and hence (i) in the
lemma is true.
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3 The Cases k= 3,4,5
Theorem 3.1 f(n,3) > 1.

Proof: Let ¢ =min{j € V|(j,0) € A}. Observe that i is well defined
since (n — 1,0) € A. Clearly i # 1, so ¢ — 1 > 0 and then (0,7 — 1,7,0)
is a cycle C3 with Z(C3) > 1.

Theorem 3.2 f(n,4) > 1.

Proof: We proceed by contradiction. Taking a = 3 and zg = 0 in
Lemma 2.1 we get that for each ¢, 0 < i < t,, the (342i)-chord (0, 3+27)
is in A. Recall that t, is the greatest integer such that 3 4+ 2t, < n — 1.

When n is even, it holds that ¢, = (n —4)/2 — 1, (0,3 4 2t,) € A.
That is, (0,n—3) € A and Cy = (0,n—3,n—2,n—1,0) is a cycle with
Z(Cy) = 3. When n is odd, it holds that ¢, = | “5* | and (0,3+42t,) € A4,
namely (0,n —2) € A.

Now, we may assume that (n—3,0) € A, because otherwise the cycle
Cy=(0,n—3,n—2,n—1,0) satisfies Z(Cy) =3. If (n—1,n—3) € A
then Cy = (n—1,n—3,0,n —2,n — 1) is a cycle with Z(Cy) = 1. Else,
(n—3,n—1)c Aand Cy = (n—3,n—1,0,n —4,n — 3) is a cycle with
Z(Cy) =1.

Theorem 3.3 f(n,5) > 2.

Proof:  We consider the three casesn =0 (mod 3),n =1 (mod 3),
n=2 (mod 3).

Case n = 2 (mod 3). Taking a = 4 in Lemma 2.1, we get that
(0,n—4) € Aand C5 = (0,n—4,n—3,n—2,n—1,0) is a cycle with
Z(Cs) = 4.

Case n =1 (mod 3). Taking a = 4 in Lemma 2.1, we get that
44 3ty =n — 3. Hence (0,n —3) € A and (0,n — 6) € A. Observe that
(n—4,0) € A. Otherwise (0,n —4) € Aand C5 = (0,n —4,n —3,n —
2,n—1,0) is a cycle with Z(Cs) = 4.

Now, if (n—2,n—5) € Athen C5 = (n—2,n—5,n—4,0,n—3,n—2)
is a cycle with Z(Cs) = 2. Else (n —5,n —2) € A and C5 = (0,n —
6,n —5,n—2,n—1,0) is a cycle with Z(C5) = 3.

Casen =0 (mod 3). If (0,3) € A then taking a = 3 in Lemma 2.1,
we obtain that (0,n —6) € A and (0,n — 3) € A. The proof proceeds
exactly as in the proof for the case n = 1 (mod 3). Hence, let us
assume that (3,0) € A.
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Observe that (5,0) € A, because otherwise (0,5) € A and taking
a =5 in Lemma 2.1, we get that (0,n —4) € A and C5 = (0,n —4,n —
3,n—2,n—1,0) is a cycle with Z(Cs) = 4.

Therefore we have that (5,0) € A and (3,0) € A. Considering the
cycle (0,1,2,3,4,5,0) it is easy to check that (5,3) € A and (1,5) € A4
(or else the proof follows). Analyzing the direction of the arc joining 2
and 5 we see that in any case there is a cycle C5 with Z(Cs) = 2: If
(5,2) € A then the cycle is C5 = (3,0,1,5,2,3), else, if (2,5) € A then
the cycle is C5 = (3,0,1,2,5,3).

4 The case of n =2k —4
In this section it is proved that if n = 2k — 4 then f(n, k) > k — 3.
Theorem 4.1 If n = 2k — 4 then f(n,k) >k — 3.

Proof: Let x and y be two vertices of T' such that I{x,v,y) =
I{y,v,x) = k —2. Without loss of generality we can assume that = 0,
y =k —2and (0,k—2) € A. Hence (k—1,2) is a (k — 1)-chord,
(2,v,k—1) =k—3, (1,k) is a (k — 1)-chord and I(2,v,k+ 1) = k — 1.

k,2) € A. Otherwise (2,k) € A and then Cy, = (k—2,k—1,2,k)U
k,~v,0) U (0,k —2) is a cycle with Z(Cy) = k — 3.

(
(
(I,k — 1) € A. Otherwise (k — 1,1) € A and then Cy = (k —
1,1,k)U(k,v,0)U(0,k—2,k—1)is a cycle with Z(Cy) = k — 3.
Therefore, since (k,2) € Aand (1,k—1) € Athen Cy, = (1,k—1,k,2,k+
1)U(k+1,~,1) is a cycle with Z(C}) = k—3. Notice that 0 € (k+1,~,1).

5 Thecaseof r=Lk—1landr=%t—2

In this section it is proved that if r = k — 1 or r = k — 2 then f(n, k) >
k—3.

Theorem 5.1 Ifr =k —1 orr =k —2 then f(n, k) >k — 3.

Proof: Assume r = k — 1. By Lemma 2.1 (taking ¢ = 0) either
f(n,k,T) > k—2or (0,k —1) € A. In the latter case we have that
(k—14t(k—2),7v,0)U(0, k—1+4t(k—2)) is a cycle of length k intersecting
v in k — 1 arcs. Thus, in both cases, f(n,k,T) > k — 2.



CYCLE-PANCYCLISM IN TOURNAMENTS

Now, assume r = k — 2 and f(n, k,T)<k—3.
We consider the vertices z = k—1+t(k—2),y = k—1+(t—1)(k—2).
Observe that when ¢t = 0 we obtain y = 1.

(i) (0,z) € A. It follows from Lemma 2.1.
(ii) (z —1,0) € A. It follows directly from the case r = k — 1.

(iii) (z,y) € A. If (z,y) & A then (y,z) € Aand (y,2)U(z,7,0)U(0,y)
(Lemma 2.1 implies (0,y) € A) is a cycle of length k intersecting
7 in at least k — 2 arcs.

It follows from (i), (ii) and (iii) that (0,z,y)U(y,v,x —1)U(x—1,0)
is a cycle of length k which intersects = in at least k& — 3 arcs. A
contradiction.

The case of n = 2k — 3 follows from this theorem because in this
case r =k — 2.

The case of n = 2k — 2 is trivial.

6 The Case k=6

Theorem 6.1 f(7,6) = 2.

Proof: By Theorem 7.5 of [4], f(7,6) < 3, and therefore f(7,6) < 3.
We proceed to prove that f(?, 6) > 2.

We consider v = (0,1,2,3,4,5,6), and construct a cycle Cys going
through 0 with at least 2 arcs in common with . Clearly, we can assume
that the arcs (2,0), (4,2), (6,4) and (0,5) are in A because otherwise
there exists a cycle Cg passing through 0 with Z(Cg) = 5.

Consider two cases: (0,3) € A or (3,0) € A. For the case (0,3) €
A, we first prove that (2,6) € A. Otherwise, (6,2) € A and Cg =
(0,3,4,5,6,2,0) goes through 0 and has Z(Cs) = 3. Thus (2,6) € A,
and we show that also (2,5) must also be in A. If (5,2) € A then C =
(0,3,4,5,2,6,0) goes through 0 and has Z(Cs) = 3. Since (0,3) € A
and (2,5) € A we have Cs = (0, 3,4,2,5,6,0) that goes through 0 and
has Z(Cs) = 3.

The case where (3,0) € A we have Cs = (0,5,6,4,2,3,0) that goes
through 0 and has Z(Cg) = 2.

Theorem 6.2 f(n,6) >3 if n > 8.
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Proof:  We consider the four cases n =4 (mod 4),i=0,1,2,3.

Case n =3 (mod 4).

First notice that (n—1,4) € A, since otherwise Cs = (0,1,2,3,4,n—
1,0) goes through 0 and has Z(Cs) = 5. Also, (6,0) € A, because
otherwise, if (0,6) € A by Lemma 2.1, (0,n —5) € A and Cs = (0,n —
5,n—4,n—3,n—2,n—1,0) goes through 0 and has Z(Cs) = 5. Again
by Lemma 2.1, (0,n — 2) € A. We conclude the proof if this case with
Cs=(0,n—2,n—1,4,5,6,0) that goes through 0 and has Z(Cs) = 3.

Case n = 2 (mod 4). Taking a = 5 in Lemma 2.1, we get that
(0,n—=>5) € Aand Cs = (0,n—5,n—4,n—3,n—2,n—1,0) is a cycle
with Z(Cs) = 5.

Case n =1 (mod 4). Taking a = 5 in Lemma 2.1, we get that
5+ 4t; =n — 4. Hence (0,n —4) € A and (0,n — 8) € A. Observe that
(n—5,0) € A. Otherwise (0,n —5) € A and Cs = (0,n —5,n —4,n —
3,n—2,n—1,0) is a cycle with Z(Cg) = 5.

Now, if (n — 2,n — 6) € A then Cs = (n — 2,n — 6,n — 5,0,n —
4,n —3,n —2) is a cycle with Z(Cg) = 3. Else (n —6,n —2) € A and
Cs =(0,n—8n—T7n—6n—2n—1,0)is a cycle with Z(Cg) = 4.
Notice that this cycle is well defined, since n > 9. This is so because
n=1 (mod4)andn > 8.

Casen =0 (mod 4). If (0,4) € A then taking a = 4 in Lemma 2.1,
we obtain that (0,n—4) € A. The proof proceeds exactly as in the proof
for the case n =1 (mod 4). Hence, let us assume that (4,0) € A.

Observe that (6,0) € A, because otherwise (0,6) € A and taking
a = 6 in Lemma 2.1, we get that (0,n —2) € A, and the proof proceeds
exactly as in the proof for the case n = 3 (mod 4). It follows that
(5,3) € A, because if (3,5) € A then Cs = (0,1,2,3,5,6,0) is a cycle
Cs with Z(Cs) = 4.

Now, (5,2) € A, because if (2,5) € A then Cs = (0,1,2,5,3,4,0) is
a cycle Cs with Z(Cg) = 3. Therefore, (5,1) € A, because if (1,5) € A
then Cs = (0,1,5,2,3,4,0) is a cycle Cg with Z(Cg) = 3.

Finally, using the chords (0, 5), (5,1), (4,0) we get Cs = (0,5, 1,2, 3,
4,0) is a cycle Cg with Z(Cg) = 3.
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