A CONJECTURE ON CYCLE–PANCYCLISM IN TOURNAMENTS *

HORTENSIA GALEANA–SÁNCHEZ¹

SERGIO RAJSBAUM²

Abstract

Let T be a Hamiltonian tournament with n vertices and γ a Hamiltonian cycle of T. In previous works we introduced and studied the concept of cycle-pancyclism to capture the following question: What is the maximum intersection with γ of a cycle of length k? More precisely, for a cycle C_k of length k in T we denote $\mathcal{I}_{\gamma}(C_k) = |A(\gamma) \cap A(C_k)|$, the number of arcs that γ and C_k have in common. Let $f(k,T,\gamma) = \max{\{\mathcal{I}_{\gamma}(C_k)|C_k \subset T\}}$ and $f(n,k) = \min{\{f(k,T,\gamma)|T \text{ is a Hamiltonian tournament with } n$ vertices, and γ a Hamiltonian cycle of T}. In previous papers we gave a characterization of f(n,k). In particular, the characterization implies that $f(n,k) \geq k - 4$. The purpose of this paper is to conjecture that for any vertex v there exists a cycle of length k containing v with f(n,k) arcs in common with γ . We present various particular cases in which this equality holds.

1991 Mathematics Subject Classification: 05C20, 05C38. Keywords and phrases: Graph Theory, Directed Graphs, Tournaments, Pancyclism.

1 Introduction

Recall that a *tournament* is a digraph in which each pair of vertices is connected by exactly one arc, that is, a complete asymmetric digraph. Quoting from the classical textbook by Behzad, Chartrand and

^{*}Invited Article.

¹Investigador Titular, Instituto de Matemáticas, U.N.A.M., C.U.

²Investigador Titular, Instituto de Matemáticas, U.N.A.M., C.U.

Lesniak-Foster [2] (pp. 353), among the various classes of digraphs, the tournaments are probably the most studied and most applicable. The book by Moon [8] treats these digraphs in great detail. The book by Robinson and Foulds [9], and the book [2] itself dedicate one chapter to tournaments.

Pancyclism is a classical subject in the study of tournaments; it has been treated in textbooks (e.g. [2]) and in many papers (e.g. [1, 3]). Two types of pancyclism have been considered. A tournament T is *vertex-pancyclic* if given any vertex v there are cycles of every length containing v. Similarly, a tournament T is *arc-pancyclic* if given any arc e there are cycles of every length containing e. It is well known, and perhaps surprising, that if a tournament has a cycle going through all of its vertices (i.e. it has a *Hamiltonian cycle* or the tournament is *Hamiltonian*) then it is vertex-pancyclic. This result was first proved by Moon [7], and a proof by C. Thomassen can be found in [2] pp. 358. It is easy to see that a vertex-pancyclic tournament is not necessarily arc-pancyclic.

In a previous paper, [4], we introduced the concept of cycle-pancyclism to try to understand in more detail the structure of a pancyclic tournament; to explore how are the cycles of the various lengths positioned with respect to each other. We considered questions such as the following. Given a cycle C of a tournament T with n vertices, what is the maximum number of arcs which a cycle of length k contained in C has in common with C? In [4, 5, 6] we discovered that, for every k, there is always a cycle of length k, with its vertices contained in C, and all of its arcs contained in C except for at most 4: "almost" completely contained in C. This result implies that for any given Hamiltonian cycle γ_n of T, there is a cycle γ_{n-1} of length n-1 contained in γ_n with at most 4 edges not in γ_n . By considering the subtournament of T with n-1vertices induced by γ_{n-1} , we can repeat this argument and obtain cycles $\gamma_{n-2}, \gamma_{n-3}, \ldots$, such that each γ_i is "almost" completely contained in γ_{i+1} .

In this paper we suggest –and present some evidence– that a similar result may hold, even if we add the requirement that the cycle "almost" completely contained in C passes through a specified vertex. Informally, assume that a Hamiltonian cycle γ of a tournament T, and a vertex 0 are given, and we ask what is the maximum number of arcs that γ and a cycle of length k going through 0 have in common. This kind of result would considerably strengthen the vertex-pancyclism classical result.

We proceed with a formal description of the problem. Let T be a

Hamiltonian tournament with vertex set V and arc set A. Assume without loss of generality that $V = \{0, 1, \ldots, n-1\}$ and $\gamma = (0, 1, \ldots, n-1, 0)$ is a Hamiltonian cycle of T. Let C_k denote a directed cycle of length k. For a cycle C_k we denote $\mathcal{I}_{\gamma}(C_k) = |A(\gamma) \cap A(C_k)|$, or simply $\mathcal{I}(C_k)$ when γ is understood, the number of arcs that γ and C_k have in common. Let $f(k, T, \gamma) = \max\{\mathcal{I}_{\gamma}(C_k) | C_k \subset T\}$ and $f(n, k) = \min\{f(k, T, \gamma) | T \text{ is a}$ Hamiltonian tournament with n vertices, and γ a Hamiltonian cycle of $T\}$. In [4, 5, 6] we gave a characterization of f(n, k):

- f(n,3) = 1, f(n,4) = 1 and f(n,5) = 2 if $n \neq 2k 2$;
- f(n,k) = k 1 if and only if n = 2k 2.

For $n \ge 2k - 4$ and k > 5,

- f(n,k) = k-2 if and only if $n \neq 2k-2$ and $n \equiv k \pmod{k-2}$;
- f(n,k) = k 3 if and only if $n \not\equiv k \pmod{k-2}$.

For $n \leq 2k - 5$,

• f(n,k) = k - 4.

That is, we showed that there is always a cycle C_k almost completely contained in γ ; except for at most 4 arcs. The purpose of this paper is to conjecture that the same results hold if we in addition require that the cycles pass through a fixed vertex; that is, that for any vertex v there exists a cycle of length k containing v with f(n, k) arcs in common with γ . As evidence for the conjecture, we present various particular cases in which this equality holds.

More precisely, for a vertex v of a Hamiltonian tournament T with n, let

$$f(k, T, \gamma, v) = \max\{\mathcal{I}_{\gamma}(C_k) | C_k \subset T\},\$$

for short denoted sometimes $\tilde{f}(n, k, T)$, and to stress that T has n vertices. Let $\tilde{f}(n, k) = \min\{\tilde{f}(k, T, \gamma, v)|T, v \in T, \text{ and } \gamma \text{ a Hamiltonian cycle of } T\}$. Clearly, $\tilde{f}(n, k) \leq f(n, k)$. We conjecture that $\tilde{f}(n, k) = f(n, k)$.

We know that the conjecture is true in the following particular cases. When

- k = 3, 4, 5, 6;
- n = 2k 2, 2k 3, 2k 4;

• r = k - 1, k - 2, where $n - k + 1 \equiv r \pmod{k - 2}$.

The proofs are identical to the ones in [4], except for the proof of case r = k - 2, which is similar, and the case k = 6 which is new. For completeness we include all the proofs here.

2 Preliminaries

In the rest of this paper we consider an arbitrary tournament T with n vertices, with some fixed vertex 0, and a Hamiltonian cycle $\gamma = (0, 1, \ldots, n - 1, 0)$.

A chord of a cycle C is an arc not in C with both terminal vertices in C. The length of a chord f = (u, v) of C, denoted l(f), is equal to the length of $\langle u, C, v \rangle$, where $\langle u, C, v \rangle$ denotes the uv-directed path contained in C. We say that f is a c-chord if l(f) = c and f = (u, v)is a -c-chord if $l\langle v, C, u \rangle = c$. Observe that if f is a c-chord then it is also a -(n-c)-chord.

In what follows all notation is taken modulo n.

For any $a, 2 \le a \le n-2$, denote by t_a the largest integer such that $a + t_a(k-2) < n-1$. The important case of t_{k-1} is denoted by t in the rest of the paper. Let r be defined as follows: r = n - [k - 1 + t(k-2)]. Notice the following facts.

- If $a \leq b$, then $t_a \geq t_b$.
- $t \ge 0$.
- $2 \leq r \leq k-1$.

Lemma 2.1 If the *a*-chord with initial vertex 0 is in A, then at least one of the two following properties holds.

- (i) $\tilde{f}(n,k,T) \ge k-2.$
- (ii) For every 0 ≤ i ≤ t_a, the a + i(k − 2)-chord with initial vertex 0 is in A.

Proof: Suppose that (ii) in the lemma is false, and let

$$j = \min\{i \in \{1, 2, \dots, t_a\} \mid (a + i(k - 2), 0) \in A\},\$$

then

$$C_k = (0, a + (j-1)(k-2)) \cup \langle a + (j-1)(k-2), \gamma, a + j(k-2) \rangle \cup \langle a + j(k-2), 0 \rangle$$

is a cycle such that $\mathcal{I}(C_k) = k - 2$ with $0 \in C_k$, and hence (i) in the lemma is true.

3 The Cases k = 3, 4, 5

Theorem 3.1 $\tilde{f}(n,3) \ge 1$.

Proof: Let $i = \min\{j \in V | (j, 0) \in A\}$. Observe that *i* is well defined since $(n - 1, 0) \in A$. Clearly $i \neq 1$, so i - 1 > 0 and then (0, i - 1, i, 0) is a cycle C_3 with $\mathcal{I}(C_3) \geq 1$.

Theorem 3.2 $\tilde{f}(n, 4) \ge 1$.

Proof: We proceed by contradiction. Taking a = 3 and $x_0 = 0$ in Lemma 2.1 we get that for each $i, 0 \le i \le t_a$, the (3+2i)-chord (0, 3+2i) is in A. Recall that t_a is the greatest integer such that $3 + 2t_a < n - 1$.

When n is even, it holds that $t_a = (n-4)/2 - 1$, $(0, 3+2t_a) \in A$. That is, $(0, n-3) \in A$ and $C_4 = (0, n-3, n-2, n-1, 0)$ is a cycle with $\mathcal{I}(C_4) = 3$. When n is odd, it holds that $t_a = \lfloor \frac{n-4}{2} \rfloor$ and $(0, 3+2t_a) \in A$, namely $(0, n-2) \in A$.

Now, we may assume that $(n-3,0) \in A$, because otherwise the cycle $C_4 = (0, n-3, n-2, n-1, 0)$ satisfies $\mathcal{I}(C_4) = 3$. If $(n-1, n-3) \in A$ then $C_4 = (n-1, n-3, 0, n-2, n-1)$ is a cycle with $\mathcal{I}(C_4) = 1$. Else, $(n-3, n-1) \in A$ and $C_4 = (n-3, n-1, 0, n-4, n-3)$ is a cycle with $\mathcal{I}(C_4) = 1$.

Theorem 3.3 $\tilde{f}(n,5) \ge 2$.

Proof: We consider the three cases $n \equiv 0 \pmod{3}$, $n \equiv 1 \pmod{3}$, $n \equiv 2 \pmod{3}$.

Case $n \equiv 2 \pmod{3}$. Taking a = 4 in Lemma 2.1, we get that $(0, n-4) \in A$ and $C_5 = (0, n-4, n-3, n-2, n-1, 0)$ is a cycle with $\mathcal{I}(C_5) = 4$.

Case $n \equiv 1 \pmod{3}$. Taking a = 4 in Lemma 2.1, we get that $4 + 3t_4 = n - 3$. Hence $(0, n - 3) \in A$ and $(0, n - 6) \in A$. Observe that $(n - 4, 0) \in A$. Otherwise $(0, n - 4) \in A$ and $C_5 = (0, n - 4, n - 3, n - 2, n - 1, 0)$ is a cycle with $\mathcal{I}(C_5) = 4$.

Now, if $(n-2, n-5) \in A$ then $C_5 = (n-2, n-5, n-4, 0, n-3, n-2)$ is a cycle with $\mathcal{I}(C_5) = 2$. Else $(n-5, n-2) \in A$ and $C_5 = (0, n-6, n-5, n-2, n-1, 0)$ is a cycle with $\mathcal{I}(C_5) = 3$.

Case $n \equiv 0 \pmod{3}$. If $(0,3) \in A$ then taking a = 3 in Lemma 2.1, we obtain that $(0, n - 6) \in A$ and $(0, n - 3) \in A$. The proof proceeds exactly as in the proof for the case $n \equiv 1 \pmod{3}$. Hence, let us assume that $(3,0) \in A$.

Observe that $(5,0) \in A$, because otherwise $(0,5) \in A$ and taking a = 5 in Lemma 2.1, we get that $(0, n - 4) \in A$ and $C_5 = (0, n - 4, n - 3, n - 2, n - 1, 0)$ is a cycle with $\mathcal{I}(C_5) = 4$.

Therefore we have that $(5,0) \in A$ and $(3,0) \in A$. Considering the cycle (0,1,2,3,4,5,0) it is easy to check that $(5,3) \in A$ and $(1,5) \in A$ (or else the proof follows). Analyzing the direction of the arc joining 2 and 5 we see that in any case there is a cycle C_5 with $\mathcal{I}(C_5) = 2$: If $(5,2) \in A$ then the cycle is $C_5 = (3,0,1,5,2,3)$, else, if $(2,5) \in A$ then the cycle is $C_5 = (3,0,1,5,2,3)$, else, if $(2,5) \in A$ then the cycle is $C_5 = (3,0,1,2,5,3)$.

4 The case of n = 2k - 4

In this section it is proved that if n = 2k - 4 then $\tilde{f}(n,k) \ge k - 3$.

Theorem 4.1 If n = 2k - 4 then $\tilde{f}(n,k) \ge k - 3$.

Proof: Let x and y be two vertices of T such that $l\langle x, \gamma, y \rangle = l\langle y, \gamma, x \rangle = k-2$. Without loss of generality we can assume that x = 0, y = k-2 and $(0, k-2) \in A$. Hence (k-1, 2) is a (k-1)-chord, $l\langle 2, \gamma, k-1 \rangle = k-3$, (1, k) is a (k-1)-chord and $l\langle 2, \gamma, k+1 \rangle = k-1$.

- $(k, 2) \in A$. Otherwise $(2, k) \in A$ and then $C_k = (k-2, k-1, 2, k) \cup \langle k, \gamma, 0 \rangle \cup (0, k-2)$ is a cycle with $\mathcal{I}(C_k) = k 3$.
- $(1, k 1) \in A$. Otherwise $(k 1, 1) \in A$ and then $C_k = (k 1, 1, k) \cup \langle k, \gamma, 0 \rangle \cup (0, k 2, k 1)$ is a cycle with $\mathcal{I}(C_k) = k 3$.

Therefore, since $(k, 2) \in A$ and $(1, k-1) \in A$ then $C_k = (1, k-1, k, 2, k+1) \cup \langle k+1, \gamma, 1 \rangle$ is a cycle with $\mathcal{I}(C_k) = k-3$. Notice that $0 \in \langle k+1, \gamma, 1 \rangle$.

5 The case of r = k - 1 and r = k - 2

In this section it is proved that if r = k - 1 or r = k - 2 then $\tilde{f}(n,k) \ge k - 3$.

Theorem 5.1 If r = k - 1 or r = k - 2 then $\tilde{f}(n, k) \ge k - 3$.

Proof: Assume r = k - 1. By Lemma 2.1 (taking i = 0) either $\tilde{f}(n, k, T) \ge k - 2$ or $(0, k - 1) \in A$. In the latter case we have that $\langle k - 1 + t(k-2), \gamma, 0 \rangle \cup (0, k - 1 + t(k-2))$ is a cycle of length k intersecting γ in k - 1 arcs. Thus, in both cases, $\tilde{f}(n, k, T) \ge k - 2$.

Now, assume r = k - 2 and $\hat{f}(n, k, T) < k - 3$.

We consider the vertices x = k - 1 + t(k-2), y = k - 1 + (t-1)(k-2). Observe that when t = 0 we obtain y = 1.

- (i) $(0, x) \in A$. It follows from Lemma 2.1.
- (ii) $(x-1,0) \in A$. It follows directly from the case r = k-1.
- (iii) $(x, y) \in A$. If $(x, y) \notin A$ then $(y, x) \in A$ and $(y, x) \cup \langle x, \gamma, 0 \rangle \cup (0, y)$ (Lemma 2.1 implies $(0, y) \in A$) is a cycle of length k intersecting γ in at least k - 2 arcs.

It follows from (i), (ii) and (iii) that $(0, x, y) \cup \langle y, \gamma, x-1 \rangle \cup (x-1, 0)$ is a cycle of length k which intersects γ in at least k-3 arcs. A contradiction.

The case of n = 2k - 3 follows from this theorem because in this case r = k - 2.

The case of n = 2k - 2 is trivial.

6 The Case k = 6

Theorem 6.1 $\tilde{f}(7,6) = 2$.

Proof: By Theorem 7.5 of [4], f(7,6) < 3, and therefore $\tilde{f}(7,6) < 3$. We proceed to prove that $\tilde{f}(7,6) \ge 2$.

We consider $\gamma = (0, 1, 2, 3, 4, 5, 6)$, and construct a cycle C_6 going through 0 with at least 2 arcs in common with γ . Clearly, we can assume that the arcs (2, 0), (4, 2), (6, 4) and (0, 5) are in A because otherwise there exists a cycle C_6 passing through 0 with $\mathcal{I}(C_6) = 5$.

Consider two cases: $(0,3) \in A$ or $(3,0) \in A$. For the case $(0,3) \in A$, we first prove that $(2,6) \in A$. Otherwise, $(6,2) \in A$ and $C_6 = (0,3,4,5,6,2,0)$ goes through 0 and has $\mathcal{I}(C_6) = 3$. Thus $(2,6) \in A$, and we show that also (2,5) must also be in A. If $(5,2) \in A$ then $C_6 = (0,3,4,5,2,6,0)$ goes through 0 and has $\mathcal{I}(C_6) = 3$. Since $(0,3) \in A$ and $(2,5) \in A$ we have $C_6 = (0,3,4,2,5,6,0)$ that goes through 0 and has $\mathcal{I}(C_6) = 3$.

The case where $(3,0) \in A$ we have $C_6 = (0,5,6,4,2,3,0)$ that goes through 0 and has $\mathcal{I}(C_6) = 2$.

Theorem 6.2 $\tilde{f}(n, 6) \ge 3$ if $n \ge 8$.

Proof: We consider the four cases $n \equiv i \pmod{4}$, i = 0, 1, 2, 3. Case $n \equiv 3 \pmod{4}$.

First notice that $(n-1,4) \in A$, since otherwise $C_6 = (0,1,2,3,4,n-1,0)$ goes through 0 and has $\mathcal{I}(C_6) = 5$. Also, $(6,0) \in A$, because otherwise, if $(0,6) \in A$ by Lemma 2.1, $(0,n-5) \in A$ and $C_6 = (0,n-5,n-4,n-3,n-2,n-1,0)$ goes through 0 and has $\mathcal{I}(C_6) = 5$. Again by Lemma 2.1, $(0,n-2) \in A$. We conclude the proof if this case with $C_6 = (0,n-2,n-1,4,5,6,0)$ that goes through 0 and has $\mathcal{I}(C_6) = 3$.

Case $n \equiv 2 \pmod{4}$. Taking a = 5 in Lemma 2.1, we get that $(0, n-5) \in A$ and $C_6 = (0, n-5, n-4, n-3, n-2, n-1, 0)$ is a cycle with $\mathcal{I}(C_6) = 5$.

Case $n \equiv 1 \pmod{4}$. Taking a = 5 in Lemma 2.1, we get that $5 + 4t_5 = n - 4$. Hence $(0, n - 4) \in A$ and $(0, n - 8) \in A$. Observe that $(n - 5, 0) \in A$. Otherwise $(0, n - 5) \in A$ and $C_6 = (0, n - 5, n - 4, n - 3, n - 2, n - 1, 0)$ is a cycle with $\mathcal{I}(C_6) = 5$.

Now, if $(n-2, n-6) \in A$ then $C_6 = (n-2, n-6, n-5, 0, n-4, n-3, n-2)$ is a cycle with $\mathcal{I}(C_6) = 3$. Else $(n-6, n-2) \in A$ and $C_6 = (0, n-8, n-7, n-6, n-2, n-1, 0)$ is a cycle with $\mathcal{I}(C_6) = 4$. Notice that this cycle is well defined, since $n \geq 9$. This is so because $n \equiv 1 \pmod{4}$ and $n \geq 8$.

Case $n \equiv 0 \pmod{4}$. If $(0, 4) \in A$ then taking a = 4 in Lemma 2.1, we obtain that $(0, n-4) \in A$. The proof proceeds exactly as in the proof for the case $n \equiv 1 \pmod{4}$. Hence, let us assume that $(4, 0) \in A$.

Observe that $(6,0) \in A$, because otherwise $(0,6) \in A$ and taking a = 6 in Lemma 2.1, we get that $(0, n - 2) \in A$, and the proof proceeds exactly as in the proof for the case $n \equiv 3 \pmod{4}$. It follows that $(5,3) \in A$, because if $(3,5) \in A$ then $C_6 = (0,1,2,3,5,6,0)$ is a cycle C_6 with $\mathcal{I}(C_6) = 4$.

Now, $(5,2) \in A$, because if $(2,5) \in A$ then $C_6 = (0,1,2,5,3,4,0)$ is a cycle C_6 with $\mathcal{I}(C_6) = 3$. Therefore, $(5,1) \in A$, because if $(1,5) \in A$ then $C_6 = (0,1,5,2,3,4,0)$ is a cycle C_6 with $\mathcal{I}(C_6) = 3$.

Finally, using the chords (0, 5), (5, 1), (4, 0) we get $C_6 = (0, 5, 1, 2, 3, 4, 0)$ is a cycle C_6 with $\mathcal{I}(C_6) = 3$.

Acknowledgement

We thank the anonymous referees for helpful comments.

Hortensia Galeana–Sánchez	Sergio Rajsbaum
Instituto de Matemáticas	Instituto de Matemáticas
U. Nacional Autónoma de México	U. Nacional Autonoma de México
C.U., Circuito Exterior	C.U., Circuito Exterior
D.F. 04510, México	D.F. 04510, México
hgaleana@servidor.unam.mx	rajsbaum@math.unam.mx

References

- B. Alspach, Cycles of each length in regular tournaments, Canadian Math. Bull. 10 (1967), 283–286.
- [2] M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs & Digraphs, Prindle, Weber & Schmidt International Series, 1979.
- [3] J.C. Bermond and C. Thomasen, Cycles in digraphs A survey,
 J. Graph Theory 5 (1981), vol. 43, 145–157.
- [4] H. Galeana-Sánchez and S. Rajsbaum, Cycle-pancyclism in tournaments I, Graphs and Combinatorics 11 (1995), 233–243.
- [5] H. Galeana-Sánchez and S. Rajsbaum, Cycle-pancyclism in tournaments II, Graphs and Combinatorics 12 (1996), 9–16.
- [6] H. Galeana-Sánchez and S. Rajsbaum, Cycle-pancyclism in tournaments III, Graphs and Combinatorics 13 (1997), 57–63.
- [7] J.W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1966), 297–301.
- [8] J.W. Moon, *Topics on Tournaments*, Holt, Rinehart and Winston, New York, 1968.
- [9] D.F. Robinson and L.R. Foulds, *Digraphs: Theory and Techniques*, Gordon and Breach Science Publishing, 1980.