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The complexity of coding problems

Irasema Sarmiento!

Abstract

In this work we deal with two problems related with the weight
enumerator of a linear code. That is, determining the middle coef-
ficient and the number of vectors in the code with no zero entries.
We prove that the first problem is NP-hard because determining
any coefficient of the weight enumerator is Turing reducible to
determining the middle one. We prove as well that the second
problem is NP-complete by reducing it to the problem of whether
or not a graph is 3-colourable. We include the necessary back-
ground in complexity and matroids.
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1 Introduction

Here we give an informal introduction to the complexity concepts used
in the next sections.

For any finite set X of symbols, we denote by ¥* the set of all finite
strings of symbols from 3. If L C ¥*, we say that L is a language over
the alphabet X. An encoding scheme e for a problem II provides a way of
describing each instance of II by an appropriate string of symbols over
some fixed alphabet 3. The decision problems have only two possible
solutions, yes or no.

The language that we associate with II and e is:

LIl,e] = {x € X¥":X¥ is the alphabet used by e,

and x is the encoding under e of an instance I € Yir}
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where Y7 is the set of “yes” instances.

A deterministic Turing machine (DTM) is a model of computation.
A program for a DTM includes a finite set of states with two distin-
guished halt-states gy and qy. We say that a DTM program M with
input alphabet ¥ accepts x € ¥* if and only if M halts in a state gy
when applied to input x. The language Lj; recognised by the program
M is given by:

Ly ={xe¥": M accepts x}.

We say that a DTM program M solves the decision problem II un-
der encoding scheme e if M halts for all input strings over its input
alphabet and Ly, = L[I1, e].

The time used in the computation of a DTM program M on an
input x is the number of steps occurring in that computation up until
a halt state is entered. For a DTM program M that halts for all inputs
x € X*, its time complexity function Ty : ZT — Z7 is given by:

Ty (n) = max{m :thereis an x € ¥*, with |z| = n, such that

the computation of M on input x takes time m}.

Such a program M is called a polynomial time DTM program if there
exists a polynomial p such that Th(n) < p(n) for all positive integers
n.

The class of languages P is defined as:

P = {L : there is a polynomial time
DTM program M for which L = Ly}.

We say that a decision problem IT belongs to P under the encoding
scheme e if L[II,e] € P.

The class NP is intended to capture the idea of polynomial time ver-
ifiability, that is, given an instance I it can be verified in polynomial
time if the answer for I is yes. Note that polynomial time verifiability
does not imply polynomial time solvability unless NP = P. Formally
NP can be defined using the notion of a program for a nondeterministic
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Turing machine (NDTM). Note that P C NP.

A polynomial transformation from a language L1 C X7 to a language
Lo C X5 is a function f : ¥] — X5 that satisfies:

1. There is a polynomial time DTM program that computes f.
2. For all x € %, x € Ly if and only if f(x) € La.

If there is a polynomial transformation from L; to Lo we write
L1 x Lo. A language L is defined to be NP-complete if L € NP
and L' «c L for all L' € NP. Cook’s major theorem is that NP-complete
languages exist.

A search problem II consists of a set Dy of finite objects called in-
stances and, for each instance I € Dy, a set Sy[I] of finite objects
called solutions for I. An algorithm is said to solve a search problem
IT if, given as input any instance I € Dy, it returns the answer “no”
whenever Stp[I] is empty and otherwise some solution s belonging to

Sulll.

A polynomial time Turing reduction (or simply Turing reduction)
from a search problem II to a search problem II’ is an algorithm A that
solves II by using a hypothetical subroutine S for solving II" such that,
if S was a polynomial time algorithm for II’, then A would be a poly-
nomial time algorithm for II. We say that IT is Turing reducible to IT'.
This can be defined formally using oracle Turing machines.

2 Linear codes

In this section we introduce some elementary concepts about linear
codes.

We use Fj, to denote the finite field with ¢ elements, for ¢ a prime
power. A linear [n, k| g-ary code C' is a subspace of dimension k of a
vector space V' of dimension n over F,. The members of C' are called
codewords. We assume that V' = F'.
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Let ¢ = (1, +,¢n),¢ = (¢}, -,¢,) € C. The Hamming distance
between ¢ and ¢ is defined as d(c, ) = |[{i : ¢; # c,}|; the weight of ¢
is w(c) = d(c, 0).

The weight enumerator of C is the polynomial A(C,q,z) = >, a;z,
where a; = [{c € C : w(c) = i}|. Note that ag = 1.

A generating matriz for C' is a k x n matrix over F; such that its
rows form a basis of C. The dualcode C* of CisC* ={v eV :v-c=0
Ve € C}. A generating matrix for C* is called a parity check matriz for
C.

Two codes are called equivalent if one can be obtained from the other
by a sequence of operations of the following type:
(A) permutation of the positions of the code;

(B) multiplication of the symbols appearing in a fixed position by a
non-zero scalar.

Let M; and M> be two generating matrices for the g-ary codes Cy
and Co. Then these two codes are equivalent if and only if M> can be
obtained from M; by a sequence of the following operations:

R1) permutation of the rows;
R2) multiplication of a row by a non-zero scalar;

C1
C2

(R1)
(R2)
(R3) addition of a scalar multiple of one row to another;
(C1) permutation of the columns;

(C2)

multiplication of any column by a non-zero scalar.

Since equivalent codes have the same parameters (n, k) and the same
weight enumerator, we can assume that, for a given code C, its gener-
ating matrix is in the standard form [Ix|A]. If it is not the case, then
we can transform the given generating matrix (or a matrix whose rows
are a generating set for C') into the generating matrix of an equivalent
code by a sequence of the given operations and (R4) elimination of a
zero row. Note that we can do it in polynomial time (this by Gaussian
elimination). On the other hand, if G = [I;|A] is a generator matrix for
an [n, k]-code C, then a parity-check matrix for C is H = [—AT|I,_4],
which we can obtain from G in polynomial time.
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3 The hardest coefficient of A(C,q, 2)

In this section we prove that for any ¢ € {1,---,n}, determining a; is
Turing reducible to determining a|, /o).

Let C C F}" be an [m,r]-code. Let C' = {¢ € F;"t1 : ¢/ = (¢,0),c €
C'}. Note that A(C,q,z) = A(C’,q, z) and, in fact, C' and C" are isomor-
phic. Hence we can assume without loss of generality that m is even.
Let m/2 <i <m and C” = C x {0}*~™, then C" is a code of length
n = 2i over Fy, which can be constructed in polynomial time from C' and
al = a’é/Q =|{" el :w(d)=i=n/2} =|{ce C:w(c) =i} = a.

Now, let 1 <1i < m/2 and let U be a generating matrix for C, (n = 4m).
Consider C" C F;"* with generating matrix U’ € F;*™ defined by:

11 ... 1
00 ... 0
U=1|U
00 ... 0
By the definition of a generating matrix, the rows wy,---,u, of U are a
basis for C and
VeeC:J ay,-,op € Fyic=oqug + - + oty

We are constructing C’ in order to count the number of codewords
such that a; # 0. Note that we can construct C’ in polynomial time.
Observe that V¢ € C'3 ay, -+, a, € Fy

/ / /
c = ouyp + -+ apl,
- al(ulla"'aulmala"'al)+"'+a7‘(urla"'au7“ﬂ%0a”"0)
= (aqurr + -+ QpUpr, o, 0 UL, F o QU QL -, O,
where v, -, u,. are the rows of U’.

Let W : C' — C" be such that W(3>"_, aju;) = 3 %_; ajuj. Then ¥
is an isomorphism and the sets {c € C': ay # 0} and {¢ € C" : oy # 0}
have the same cardinality, |{¢’ € C' : w(¢/) > n — m}|, because a1 #
0< w(¥(c)) >n—m for any c € C.

Now note that the function ® : {¢ € C : w(c) =i and a1 # 0} —

{¢ € ¢ w(d) =i+mn—m} defined by ®(37,_; aju;) =377 ajuf is
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a bijection, and [{c € C': w(c) =i and a1 # 0} = |{d € C" : w(d) =
i+n—m}|:=d.

But since n/2 < i4+mn —m, we can determine d; in time bounded by
a polynomial in n = 4m, and so, by a polynomial in m calling an oracle
for a\_n/zj .

Since [{c € C : w(c) =i}| = |{c € C : w(c) =i and a1 = 0}| + 41,
we need to compute now |[{c¢ € C': w(c) = ¢ and a; = 0}|. In order to
do this we define C; C F;" with generating matrix

u21 ... Um

Uprl - Uprm

Clearly we can construct C] in polynomial time from C. Continuing
with this process we have a; = [{c € C :w(c) =i and a1 = - a,—1 =
0} +01+---+0r—1, where each of 61, - --d,_1 can be determined in time
bounded by a polynomial in m calling an oracle for a|, /3.

On the other hand {¢ € C' : w(c) =i and a1 = -+ a1 = 0} =
{au, : a € Fy and w(c) = i} = {au, : a € F; and w(c) = i}, which is
equal to ¢ if w(u,) # i and ¢ — 1 otherwise. Therefore we can deter-
mine a; in polynomial time using the algorithm to determine a|, /| as
a subroutine.

4 An NP-complete problem

In this section we prove that given an [m, k] g-ary code C, the decision
problem: is a,, # 0 7, is NP-complete. In fact, we prove that the prob-
lem is NP-complete for ¢ = 3, and so, we have the result for the general
case. In Section 6 we give another proof of this result.

Note that when C' is a binary code, we can determine a,, in polynomial
time, because the only vector of length m in F}" is (1,...,1) (the all-
one vector). But, working as in the case ¢ = 3, the decision problem,
is a,;, # 07 is NP-complete for every g-ary code with ¢ > 2. Also,
for every fixed prime power ¢ and positive integer ¢, we can determine
{ap,ai,...,a;} in polynomial time using exhaustive search.
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Let G = (V, E) be aloop less connected graph with V' = {v1,...,v,}
and F = {e1,...,en}, and for all j = 1,...,m : ¢; = {vj,,v;,} with
J1 < ja. A proper (vertex) 3-colouring of G is a function ¢ : V. — Fj
such that ¢(u) # ¢(v) if {u,v} € E. If such a function exists we say
that G is 3-colourable. It is well known that the problem of deciding
whether or not G is 3-colourable is NP-complete.

We construct in polynomial time a code C' < F3" such that a,, # 0
if and only if G is 3-colourable. That is, we prove that the decision
problem, is G 3-colourable? is polynomial reducible to, is a,, # 07.
Let W ={¢:V — F3: ¢ is a function }. Then W is a Fj vector space
with the usual operations.

For i =1,...,n we define x,, : V' — F3 such that x,,(v) =1ifv = v,
and 0 otherwise; that is, x,, is the characteristic function of {v;}.
Then B = {Xuv,,---, Xv, } 1S a basis of W.

Now note that the elements of W are precisely the 3-colourings of G.
For every ¢ € W we define ¢y = (cg,, ..., ¢Cp,,) € F§" such that for all
Jg=1,...,m, cp, = ¢(vj,) — ¢(vj,). Define C = {c € Fy":3p € W :
¢ = c4}. Then C is a subspace of Fy" and ap, # 0 if and only if G is
3-colourable. In fact:

(i) cp + Cp = Cpiap
(i) Vo € F3 1 acy = caup-

From this we can easily see that C' = (cy, ,...,¢y,, ). Here St(v) =
{e € E(G) : v is incident with e}, and note that for all i = 1,...,n and
forall j =1,...,m, Clxw,)j 18 equal to 0 if e; does not belong to St(v;),
—1if e; € St(v;) and v; = v;,, and 1 if e; € St(v;) and v; = vy,.

Given G we can construct these vectors in polynomial time. Let M
be a matrix whose rows are Rq,..., R, and such that R; = Cxu; for all
i = 1,...,n. Using Gauss-elimination we can construct in polynomial
time from M a generating matrix for our code C'. So, the decision prob-
lem, is a,, # 07 is NP-complete.

5 Matroids and its representations

A matroid M is a pair (E,Z), where E is a finite set and Z is a collection
of subsets of E (the independent sets of M) satisfying the following
conditions:
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(11) ¢ € 1.
(12) If I €I and I C I, then I, € I.

(I3) If I; and Iy are in I and |I1| < |I2|, then Jx € Iy — I, : [ Ux € I.
A subset of I that is not in Z is called dependent.

The following are important subsets of the ground set E(M) of a
matroid M:

(i) The set of circuits of M which are the minimal dependent sets.

(ii) The set of bases of M which consists of the maximal independent
sets.

The rank of A C E(M) is the cardinality of a maximal independent
set contained in A.

A matroid can be defined by circuits, bases, or rank as well as by
independent sets. The dual of M, denoted by M™*, is a matroid with
ground set F(M) and bases set {E(M) — B : B is a basis of M}. A
loop is a circuit of M with one element, and a coloop (or isthmus) is a
co-circuit of M (that is, a circuit of M*) with cardinality one.

If T'C E(M), there is a matroid M \ T (called the deletion of T
from M) on E\ T whose independent sets are those independent sets in
M that are contained in E'\T. The contraction of T from M is defined
by M/T = (M*\ T)*.

If F is the set of edges of a graph G and Z is the set of forests of
G, then 7 is the set of independent sets of a matroid M (G) on E called
the cycle matroid of G.

Two matroids M = (E,Z) and M’ = (E’,7') are said to be isomor-
phic if there exists a bijection ¢ : E — E’ such that I; € Z if and only
if ¢(I1) € 7',

Let m = |E|, F be a field and A be an r X m matrix over F. The
columns of A span a subspace W of F" and form a matroid M’ where
7 is defined by linear independence. If M is isomorphic to M’ we say
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that A is a representation of M over F. For example, given a graph G
(with n vertices and m edges) and a field F', the matrix A constructed
as follows is a representation of M(G) over F. We orient the graph
G in the following way, let e; = {v;,,v),} (j1 < j2), then (vj,,v;,) be
the directed edge. Now consider the matrix A € F3(n x m) such that
a;; = 1 if the vertex 4 is the tail of arc j, —1 if vertex ¢ is the head of
arc j and 0 otherwise; and reduce each entry of A modulo F'

A matroid representable over Fb is called binary, a matroid repre-
sentable over Fj is called ternary and a matroid representable over every
field is called regular.

We prove now that the code C' defined in Section 4 is generated by
the rows of a matrix representation of M(G) over the field F3. Here
M(G) is the cycle matroid of the graph G. Let M € F3(n x m)
such that for all 4 = 1,...,n, R; (the ith row of M) is Cy, . Then
mi; = (cy, )j = 1if e; € St(v;) and v; = vj,, —1if ¢; € St(v;) and
v; = vj;,, and 0 otherwise; that is m;; = 1 if v; is the tail of the arc j,
—1 if v; is the head of the arc j, and 0 otherwise. Therefore A = M. It
is known that A is a representation of M(G) over F3.

6 The Tutte polynomial and the weight
enumerator of a linear code

Let M be a matroid with ground set £ and rank function r, we define its
Tutte polynomial as t(M;x,y) = > ycp(z — 1) E)=r(X) (g — 1)IXI=r(X),
This is unique because of the following theorem.

Theorem 6.1 There is a unique function from the set of isomorphism
classes of matroids to the polynomial ring Z[x,y] having the properties:

(i) t(I;x,y) = = (I denotes an isthmus).
(ii) t(L;z,y) =y (L denotes a loop).
(iii) Ife € E(M), then (deletion-contraction)

(a) t(M;z,y) =t(M\e;x,y)+t(M/e;x,y) if e is neither a loop
nor an isthmus;
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(b) t(M;z,y) = xt(M \ e;x,y) if e is an isthmus;
(c) t(M;z,y) =yt(M/e;x,y) if e is a loop.

Let M7 and M5 be two matroids with independent sets Z; and Zo
respectively. Assume that E(M;) N E(Ma) = ¢. Then the direct sum
of My and M is the matroid with ground set £ U Es and independent
sets {I1 Ul : I € I1, I € Iy}, this matroid is denoted by M; @ Mo.

A Tutte-Grothendieck invariant is a function f defined on a class of
matroids closed under minors which satisfies:

(i) f(M)=af(M\ e;z,y) +bf(M/e;z,y) for e € E(M) not a loop
or an isthmus.

(ii) f(M1 €D M) = f(My)f(M2).

Theorem 6.2 If f is a Tutte-Grothendieck invariant then
f(M) = alEl=r(E)pr(E)g (0, 20 3o
) ) a
where xo and yo are the values f takes on coloops and loops respectively.

Given a linear code C' and a generating matrix A of C, the matroid
on the columns of A (defined by linear independence) depends only on
C and not on the choice of A; this matroid is denoted by M (C). Let
C* be the dual code of C, then M (C*) is isomorphic to M*(C).

If A is a representation of the matroid M over some finite field Fj,
then we denote by C'(M) its associated linear code, the row space of A.

Concerning the weight enumerator we have the following
oy . . k _n—k . 14+(g—1 1
Proposition 6.3 A(C;q,z) = (1 — 2)"2""t(M(C); gqu)z, =)

The classical MacWilliams duality formula for linear codes can be
proved using this proposition. The MacWilliams formula is

(I—=(¢g—D=2)" ' 1—z
T ACe T

We already proved that if C'is an [n, k, d] ¢g-ary code, then the deci-
sion problem: is a, # 07, is NP-complete. We give here another proof

A(C*q,2) =
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of this fact using the Tutte polynomial.

Let G be a graph. Let A be the matrix representation of M(G)
over I, constructed as described in Section 5, we can find it in polyno-
mial time. Given a colouring ¢ of G, we say that e = {u,v} € E(G)
is a bad edge if (u) = 1 (v). The bad colouring polynomial of G is
B(G;q,2) = Y [y bi(q)2"! where bj(g) is the number of ¢ colourings of G
with exactly [ bad edges.

It is known that B(G;q,z2) = (z — 1)Fqt(M(G); =24, 2) where k

z—1

is the rank of M(G). Now let C = C(M(G)). Then A(C;q,z) =
(1= 2)k2n=ke(M(G); =02 1y apg

1-z )z
N L SNV R R
CB(Gias) = - vt (Mer I
_ n— .1+(q—1)z 1
= (1-2)*z kt(M(G),l_Z,Z>
= A(C;q,z).

z

Therefore A(C;q,z) = %B(G; ¢, 1), so

n 4 n n n b n by '
ZaiZZ — L Zbl(q)z—l _ Z(Q) zn—l _ (q) s
i=0 175 = 4 i—o 4

Then for all i = 0,---,n : a; = b"*T"(Q) implies that for all i =

0,-+-,mn : qa; = by—;(q) which is the number of g-colourings of G with
n — i bad edges. Thus qa,, = by(q) which is the number of good colour-
ings of G.

For example, with ¢ = 3, we have that a,, # 0 < G is 3-colourable.
So the problem: is a, # 07 is NP-complete. As a corollary we have
that determining a,, is §P-hard.
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