
Morfismos, Vol. 1, No. 1, 1997, pp. 35–46

The complexity of coding problems

Irasema Sarmiento1

Abstract

In this work we deal with two problems related with the weight
enumerator of a linear code. That is, determining the middle coef-
ficient and the number of vectors in the code with no zero entries.
We prove that the first problem is NP-hard because determining
any coefficient of the weight enumerator is Turing reducible to
determining the middle one. We prove as well that the second
problem is NP-complete by reducing it to the problem of whether
or not a graph is 3-colourable. We include the necessary back-
ground in complexity and matroids.

1991 Mathematics Subject Classification: 94B05, 68Q25.

Keywords and phrases: Complexity, Linear Codes, Matroids.

1 Introduction

Here we give an informal introduction to the complexity concepts used
in the next sections.

For any finite set Σ of symbols, we denote by Σ∗ the set of all finite
strings of symbols from Σ. If L ⊆ Σ∗, we say that L is a language over
the alphabet Σ. An encoding scheme e for a problem Π provides a way of
describing each instance of Π by an appropriate string of symbols over
some fixed alphabet Σ. The decision problems have only two possible
solutions, yes or no.

The language that we associate with Π and e is:

L[Π, e] = {x ∈ Σ∗ : Σ is the alphabet used by e,

and x is the encoding under e of an instance I ∈ YΠ}
1Ph.D. student, Merton College, Oxford.

35

36 Irasema Sarmiento

where YΠ is the set of “yes” instances.

A deterministic Turing machine (DTM) is a model of computation.
A program for a DTM includes a finite set of states with two distin-
guished halt-states qY and qN . We say that a DTM program M with
input alphabet Σ accepts x ∈ Σ∗ if and only if M halts in a state qY
when applied to input x. The language LM recognised by the program
M is given by:

LM = {x ∈ Σ∗ : M accepts x}.

We say that a DTM program M solves the decision problem Π un-
der encoding scheme e if M halts for all input strings over its input
alphabet and LM = L[Π, e].

The time used in the computation of a DTM program M on an
input x is the number of steps occurring in that computation up until
a halt state is entered. For a DTM program M that halts for all inputs
x ∈ Σ∗, its time complexity function TM : Z+ → Z+ is given by:

TM (n) = max{m : there is an x ∈ Σ∗, with |x| = n, such that

the computation of M on input x takes time m}.

Such a program M is called a polynomial time DTM program if there
exists a polynomial p such that TM (n) ≤ p(n) for all positive integers
n.

The class of languages P is defined as:

P = {L : there is a polynomial time

DTM program M for which L = LM}.

We say that a decision problem Π belongs to P under the encoding
scheme e if L[Π, e] ∈ P .

The class NP is intended to capture the idea of polynomial time ver-
ifiability, that is, given an instance I it can be verified in polynomial
time if the answer for I is yes. Note that polynomial time verifiability
does not imply polynomial time solvability unless NP = P . Formally
NP can be defined using the notion of a program for a nondeterministic

The Complexity of Coding Problems 37

Turing machine (NDTM). Note that P ⊆ NP .

A polynomial transformation from a language L1 ⊆ Σ∗1 to a language
L2 ⊆ Σ∗2 is a function f : Σ∗1 → Σ∗2 that satisfies:

1. There is a polynomial time DTM program that computes f .

2. For all x ∈ Σ∗1, x ∈ L1 if and only if f(x) ∈ L2.

If there is a polynomial transformation from L1 to L2 we write
L1 ∝ L2. A language L is defined to be NP-complete if L ∈ NP
and L′ ∝ L for all L′ ∈ NP. Cook’s major theorem is that NP-complete
languages exist.

A search problem Π consists of a set DΠ of finite objects called in-
stances and, for each instance I ∈ DΠ, a set SΠ[I] of finite objects
called solutions for I. An algorithm is said to solve a search problem
Π if, given as input any instance I ∈ DΠ, it returns the answer “no”
whenever SΠ[I] is empty and otherwise some solution s belonging to
SΠ[I].

A polynomial time Turing reduction (or simply Turing reduction)
from a search problem Π to a search problem Π′ is an algorithm A that
solves Π by using a hypothetical subroutine S for solving Π′ such that,
if S was a polynomial time algorithm for Π′, then A would be a poly-
nomial time algorithm for Π. We say that Π is Turing reducible to Π′.
This can be defined formally using oracle Turing machines.

2 Linear codes

In this section we introduce some elementary concepts about linear
codes.

We use Fq to denote the finite field with q elements, for q a prime
power. A linear [n, k] q-ary code C is a subspace of dimension k of a
vector space V of dimension n over Fq. The members of C are called
codewords. We assume that V = Fnq .

38 Irasema Sarmiento

Let c = (c1, · · · , cn), c′ = (c′1, · · · , c′n) ∈ C. The Hamming distance
between c and c′ is defined as d(c, c′) = |{i : ci 6= c′i}|; the weight of c
is w(c) = d(c, 0).

The weight enumerator of C is the polynomialA(C, q, z) =
∑n

i=0 aiz
i,

where ai = |{c ∈ C : w(c) = i}|. Note that a0 = 1.

A generating matrix for C is a k × n matrix over Fq such that its
rows form a basis of C. The dual code C∗ of C is C∗ = {v ∈ V : v ·c = 0
∀c ∈ C}. A generating matrix for C∗ is called a parity check matrix for
C.

Two codes are called equivalent if one can be obtained from the other
by a sequence of operations of the following type:

(A) permutation of the positions of the code;

(B) multiplication of the symbols appearing in a fixed position by a
non-zero scalar.

Let M1 and M2 be two generating matrices for the q-ary codes C1

and C2. Then these two codes are equivalent if and only if M2 can be
obtained from M1 by a sequence of the following operations:

(R1) permutation of the rows;

(R2) multiplication of a row by a non-zero scalar;

(R3) addition of a scalar multiple of one row to another;

(C1) permutation of the columns;

(C2) multiplication of any column by a non-zero scalar.

Since equivalent codes have the same parameters (n, k) and the same
weight enumerator, we can assume that, for a given code C, its gener-
ating matrix is in the standard form [Ik|A]. If it is not the case, then
we can transform the given generating matrix (or a matrix whose rows
are a generating set for C) into the generating matrix of an equivalent
code by a sequence of the given operations and (R4) elimination of a
zero row. Note that we can do it in polynomial time (this by Gaussian
elimination). On the other hand, if G = [Ik|A] is a generator matrix for
an [n, k]-code C, then a parity-check matrix for C is H = [−AT |In−k],
which we can obtain from G in polynomial time.

The Complexity of Coding Problems 39

3 The hardest coefficient of A(C, q, z)

In this section we prove that for any i ∈ {1, · · · , n}, determining ai is
Turing reducible to determining abn/2c.

Let C ⊆ Fmq be an [m, r]-code. Let C ′ = {c′ ∈ Fm+1
q : c′ = (c, 0), c ∈

C}. Note that A(C, q, z) = A(C ′, q, z) and, in fact, C and C ′ are isomor-
phic. Hence we can assume without loss of generality that m is even.
Let m/2 ≤ i ≤ m and C ′′ = C × {0}2i−m, then C ′′ is a code of length
n = 2i over Fq, which can be constructed in polynomial time from C and
a′′i = a′′n/2 = |{c′′ ∈ C ′′ : w(c′′) = i = n/2}| = |{c ∈ C : w(c) = i}| = ai.

Now, let 1 ≤ i < m/2 and let U be a generating matrix for C, (n = 4m).
Consider C ′ ⊆ Fmq with generating matrix U ′ ∈ F r×nq defined by:

U ′ =

U
1 1 . . . 1
0 0 . . . 0
...

...
...

0 0 . . . 0


By the definition of a generating matrix, the rows u1, · · · , ur of U are a
basis for C and

∀c ∈ C : ∃! α1, · · · , αr ∈ Fq : c = α1u1 + · · ·+ αrur.

We are constructing C ′ in order to count the number of codewords
such that α1 6= 0. Note that we can construct C ′ in polynomial time.
Observe that ∀c′ ∈ C ′∃! α1, · · · , αr ∈ Fq :

c′ = α1u
′
1 + · · ·+ αru

′
r

= α1(u11, · · · , u1m, 1, · · · , 1) + · · ·+ αr(ur1, · · · , urm, 0, · · · , 0)

= (α1u11 + · · ·+ αrur1, · · · , α1u1m + · · ·+ αrurm, α1, · · · , α1),

where u′1, · · · , u′r are the rows of U ′.

Let Ψ : C → C ′ be such that Ψ(
∑r

j=1 αjuj) =
∑r

j=1 αju
′
j . Then Ψ

is an isomorphism and the sets {c ∈ C : α1 6= 0} and {c′ ∈ C ′ : α1 6= 0}
have the same cardinality, |{c′ ∈ C ′ : w(c′) ≥ n − m}|, because α1 6=
0⇔ w(Ψ(c)) ≥ n−m for any c ∈ C.

Now note that the function Φ : {c ∈ C : w(c) = i and α1 6= 0} →
{c′ ∈ C ′ : w(c′) = i+ n−m} defined by Φ(

∑r
j=1 αjuj) =

∑r
j=1 αju

′
j is

40 Irasema Sarmiento

a bijection, and |{c ∈ C : w(c) = i and α1 6= 0}| = |{c′ ∈ C ′ : w(c′) =
i+ n−m}| := δ1.

But since n/2 ≤ i+n−m, we can determine δ1 in time bounded by
a polynomial in n = 4m, and so, by a polynomial in m calling an oracle
for abn/2c.

Since |{c ∈ C : w(c) = i}| = |{c ∈ C : w(c) = i and α1 = 0}| + δ1,
we need to compute now |{c ∈ C : w(c) = i and α1 = 0}|. In order to
do this we define C1 ⊆ Fmq with generating matrix u21 . . . u2m

...
...

ur1 . . . urm


Clearly we can construct C1 in polynomial time from C. Continuing

with this process we have ai = |{c ∈ C : w(c) = i and α1 = · · ·αr−1 =
0}|+δ1 + · · ·+δr−1, where each of δ1, · · · δr−1 can be determined in time
bounded by a polynomial in m calling an oracle for abn/2c.

On the other hand {c ∈ C : w(c) = i and α1 = · · ·αr−1 = 0} =
{αur : α ∈ Fq and w(c) = i} = {αur : α ∈ F ∗q and w(c) = i}, which is
equal to φ if w(ur) 6= i and q − 1 otherwise. Therefore we can deter-
mine ai in polynomial time using the algorithm to determine abn/2c as
a subroutine.

4 An NP-complete problem

In this section we prove that given an [m, k] q-ary code C, the decision
problem: is am 6= 0 ?, is NP-complete. In fact, we prove that the prob-
lem is NP-complete for q = 3, and so, we have the result for the general
case. In Section 6 we give another proof of this result.
Note that when C is a binary code, we can determine am in polynomial
time, because the only vector of length m in Fm2 is (1, . . . , 1) (the all-
one vector). But, working as in the case q = 3, the decision problem,
is am 6= 0? is NP-complete for every q-ary code with q > 2. Also,
for every fixed prime power q and positive integer t, we can determine
{a0, a1, . . . , at} in polynomial time using exhaustive search.

The Complexity of Coding Problems 41

Let G = (V,E) be a loop less connected graph with V = {v1, . . . , vn}
and E = {e1, . . . , em}, and for all j = 1, . . . ,m : ej = {vj1 , vj2} with
j1 < j2. A proper (vertex) 3-colouring of G is a function φ : V → F3

such that φ(u) 6= φ(v) if {u, v} ∈ E. If such a function exists we say
that G is 3-colourable. It is well known that the problem of deciding
whether or not G is 3-colourable is NP-complete.
We construct in polynomial time a code C < Fm3 such that am 6= 0
if and only if G is 3-colourable. That is, we prove that the decision
problem, is G 3-colourable? is polynomial reducible to, is am 6= 0?.
Let W = {φ : V → F3 : φ is a function }. Then W is a F3 vector space
with the usual operations.
For i = 1, . . . , n we define χvi : V → F3 such that χvi(v) = 1 if v = vi
and 0 otherwise; that is, χvi is the characteristic function of {vi}.
Then B = {χv1 , . . . , χvn} is a basis of W .
Now note that the elements of W are precisely the 3-colourings of G.
For every φ ∈ W we define cφ = (cφ1 , . . . , cφm) ∈ Fm3 such that for all
j = 1, . . . ,m, cφj = φ(vj2) − φ(vj1). Define C = {c ∈ Fm3 : ∃φ ∈ W :
c = cφ}. Then C is a subspace of Fm3 and am 6= 0 if and only if G is
3-colourable. In fact:

(i) cφ + cψ = cφ+ψ

(ii) ∀α ∈ F3 : αcφ = cαψ.

From this we can easily see that C = 〈cχv1
, . . . , cχvn

〉. Here St(v) =
{e ∈ E(G) : v is incident with e}, and note that for all i = 1, . . . , n and
for all j = 1, . . . ,m, c(χvi)j

is equal to 0 if ej does not belong to St(vi),
−1 if ej ∈ St(vi) and vi = vj1 , and 1 if ej ∈ St(vi) and vi = vj2 .

Given G we can construct these vectors in polynomial time. Let M
be a matrix whose rows are R1, . . . , Rn and such that Ri = cχvi

for all
i = 1, . . . , n. Using Gauss-elimination we can construct in polynomial
time from M a generating matrix for our code C. So, the decision prob-
lem, is am 6= 0? is NP-complete.

5 Matroids and its representations

A matroid M is a pair (E, I), where E is a finite set and I is a collection
of subsets of E (the independent sets of M) satisfying the following
conditions:

42 Irasema Sarmiento

(I1) φ ∈ I.

(I2) If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I.

(I3) If I1 and I2 are in I and |I1| < |I2|, then ∃x ∈ I2 − I1 : I1 ∪ x ∈ I.

A subset of E that is not in I is called dependent.

The following are important subsets of the ground set E(M) of a
matroid M :

(i) The set of circuits of M which are the minimal dependent sets.

(ii) The set of bases of M which consists of the maximal independent
sets.

The rank of A ⊆ E(M) is the cardinality of a maximal independent
set contained in A.

A matroid can be defined by circuits, bases, or rank as well as by
independent sets. The dual of M , denoted by M∗, is a matroid with
ground set E(M) and bases set {E(M) − B : B is a basis of M}. A
loop is a circuit of M with one element, and a coloop (or isthmus) is a
co-circuit of M (that is, a circuit of M∗) with cardinality one.

If T ⊆ E(M), there is a matroid M \ T (called the deletion of T
from M) on E \T whose independent sets are those independent sets in
M that are contained in E \T . The contraction of T from M is defined
by M/T = (M∗ \ T)∗.

If E is the set of edges of a graph G and I is the set of forests of
G, then I is the set of independent sets of a matroid M(G) on E called
the cycle matroid of G.

Two matroids M = (E, I) and M ′ = (E′, I ′) are said to be isomor-
phic if there exists a bijection φ : E → E′ such that I1 ∈ I if and only
if φ(I1) ∈ I ′.

Let m = |E|, F be a field and A be an r ×m matrix over F . The
columns of A span a subspace W of F r and form a matroid M ′ where
I is defined by linear independence. If M is isomorphic to M ′ we say

The Complexity of Coding Problems 43

that A is a representation of M over F . For example, given a graph G
(with n vertices and m edges) and a field F , the matrix A constructed
as follows is a representation of M(G) over F . We orient the graph
G in the following way, let ej = {vj1 , vj2} (j1 < j2), then (vj2 , vj1) be
the directed edge. Now consider the matrix A ∈ F3(n ×m) such that
aij = 1 if the vertex i is the tail of arc j, −1 if vertex i is the head of
arc j and 0 otherwise; and reduce each entry of A modulo F .

A matroid representable over F2 is called binary, a matroid repre-
sentable over F3 is called ternary and a matroid representable over every
field is called regular.

We prove now that the code C defined in Section 4 is generated by
the rows of a matrix representation of M(G) over the field F3. Here
M(G) is the cycle matroid of the graph G. Let M ∈ F3(n × m)
such that for all i = 1, . . . , n, Ri (the ith row of M) is Cχvi

. Then
mij = (cχvi

)j = 1 if ej ∈ St(vi) and vi = vj2 , −1 if ej ∈ St(vi) and
vi = vj1 , and 0 otherwise; that is mij = 1 if vi is the tail of the arc j,
−1 if vi is the head of the arc j, and 0 otherwise. Therefore A = M . It
is known that A is a representation of M(G) over F3.

6 The Tutte polynomial and the weight
enumerator of a linear code

Let M be a matroid with ground set E and rank function r, we define its
Tutte polynomial as t(M ;x, y) =

∑
X⊆E(x− 1)r(E)−r(X)(y− 1)|X|−r(X).

This is unique because of the following theorem.

Theorem 6.1 There is a unique function from the set of isomorphism
classes of matroids to the polynomial ring Z[x, y] having the properties:

(i) t(I;x, y) = x (I denotes an isthmus).

(ii) t(L;x, y) = y (L denotes a loop).

(iii) If e ∈ E(M), then (deletion-contraction)

(a) t(M ;x, y) = t(M \ e;x, y) + t(M/e;x, y) if e is neither a loop
nor an isthmus;

44 Irasema Sarmiento

(b) t(M ;x, y) = xt(M \ e;x, y) if e is an isthmus;

(c) t(M ;x, y) = yt(M/e;x, y) if e is a loop.

Let M1 and M2 be two matroids with independent sets I1 and I2

respectively. Assume that E(M1) ∩ E(M2) = φ. Then the direct sum
of M1 and M2 is the matroid with ground set E1 ∪E2 and independent
sets {I1 ∪ I2 : I1 ∈ I1, I2 ∈ I2}; this matroid is denoted by M1

⊕
M2.

A Tutte-Grothendieck invariant is a function f defined on a class of
matroids closed under minors which satisfies:

(i) f(M) = af(M \ e;x, y) + bf(M/e;x, y) for e ∈ E(M) not a loop
or an isthmus.

(ii) f(M1
⊕
M2) = f(M1)f(M2).

Theorem 6.2 If f is a Tutte-Grothendieck invariant then
f(M) = a|E|−r(E)br(E)t(M ; x0b ,

y0
a)

where x0 and y0 are the values f takes on coloops and loops respectively.

Given a linear code C and a generating matrix A of C, the matroid
on the columns of A (defined by linear independence) depends only on
C and not on the choice of A; this matroid is denoted by M(C). Let
C∗ be the dual code of C, then M(C∗) is isomorphic to M∗(C).

If A is a representation of the matroid M over some finite field Fq,
then we denote by C(M) its associated linear code, the row space of A.

Concerning the weight enumerator we have the following

Proposition 6.3 A(C; q, z) = (1− z)kzn−kt(M(C); 1+(q−1)z
1−z , 1

z).

The classical MacWilliams duality formula for linear codes can be
proved using this proposition. The MacWilliams formula is

A(C∗; q, z) =
(1− (q − 1)z)n

qk
A(C; q,

1− z
1 + (q − 1)z

).

We already proved that if C is an [n, k, d] q-ary code, then the deci-
sion problem: is an 6= 0?, is NP-complete. We give here another proof

The Complexity of Coding Problems 45

of this fact using the Tutte polynomial.

Let G be a graph. Let A be the matrix representation of M(G)
over Fq constructed as described in Section 5, we can find it in polyno-
mial time. Given a colouring ψ of G, we say that e = {u, v} ∈ E(G)
is a bad edge if ψ(u) = ψ(v). The bad colouring polynomial of G is
B(G; q, z) =

∑n
l=0 bl(q)z

l where bl(q) is the number of q colourings of G
with exactly l bad edges.

It is known that B(G; q, z) = (z − 1)kqt(M(G); z−1+q
z−1 , z) where k

is the rank of M(G). Now let C = C(M(G)). Then A(C; q, z) =

(1− z)kzn−kt(M(G); 1+(q−1)Z
1−z , 1

z) and

zn

q
B(G; q, z−1) = zn(

1

z
− 1)kt

(
M(G);

(1/z)− 1 + q

(1/z)− 1
,

1

z

)
= zn(

1− z
z

)kt

(
M(G);

1− z + qz

1− z
,

1

z

)
= (1− z)kzn−kt

(
M(G);

1 + (q − 1)z

1− z
,

1

z

)
= A(C; q, z).

Therefore A(C; q, z) = zn

q B(G; q, 1
z), so

n∑
i=0

aiz
i =

zn

q

n∑
l=0

bl(q)z
−l =

n∑
l=0

bl(q)

q
zn−l =

n∑
i=0

bn−i(q)

q
zi.

Then for all i = 0, · · · , n : ai = bn−i(q)
q implies that for all i =

0, · · · , n : qai = bn−i(q) which is the number of q-colourings of G with
n− i bad edges. Thus qan = b0(q) which is the number of good colour-
ings of G.

For example, with q = 3, we have that an 6= 0⇔ G is 3-colourable.
So the problem: is an 6= 0? is NP-complete. As a corollary we have
that determining an is]P -hard.

Acknowledgment
I thank my advisor D.J.A. Welsh for his support and guidance. I am
grateful to the CONSEJO NACIONAL DE CIENCIA Y TECNOLO-

46 Irasema Sarmiento

GIA (CONACyT) of México for the financial support I am receiving
during my D.Phil. studies at Oxford.

Irasema Sarmiento
Merton College,
Oxford OX1 4JD,
UK
sarmient@maths.ox.ac.uk

References

[1] Garey M. R., Johnson D. S. Computers and intractability, W.H. Freeman and
Company, 1991.

[2] Oxley J. G. Matroid theory, Oxford University Press, 1992.

[3] MacWilliams F. J., Sloane N. J. A. The theory of error-correcting codes North
Holland, 1983.

[4] Hill R. A first course in coding theory, Oxford University Press, 1993.

[5] Brylawski T., Oxley J. G. The Tutte polynomial and its applications, Cambridge
University Press, 1992.

[6] Welsh D. J. A. Complexity: knots, colourings and counting, Cambridge Univer-
sity Press, 1993.

