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On Configuration Spaces of Orbits of Points

and their Loop Space Homology ∗

Miguel A. Xicoténcatl1

Abstract

Certain spaces which are analogues of configuration spaces are
studied. In addition, their homology and loop space homology
are studied. The Lie algebra of primitives in the loop space is
a “twisted” extension of free Lie algebras. One fact is that the
“twisting” is given by analogues of the infinitesimal braid relations
plus a new relation.
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1 Introduction

The integral homology of ΩF (R2n, q) has been computed by E. Fadell,
S. Husseini (unpublished), and subsequently by F. Cohen and S. Gitler
[2], who showed that the Lie algebra of primitives is given by a non-
trivial extension of free Lie algebras. Namely, there is an isomorphism
from the module of primitives PH∗(ΩF (Rn, q)) ∼= L1 ⊕ . . . ⊕ Lq where
Li = L[Ai,1, . . . , Ai,i−1], is a free Lie algebra on i − 1 generators, and
the relations among the Ai,j are of the form:

[Ai,j , Ak,i] = [Ak,i, Ak,j ]
[Ai,j , Ak,j ] = [Ak,j , Ak,i]

for 1 ≤ j < i < k ≤ q

∗Invited article.
1Ph.D. student, University of Rochester. Supported by a scholarship from the

CONACYT.

13



14 Miguel A. Xicoténcatl

and [Ai,j , Ak,l] = 0 for distinct i, j, k, l, where [ , ] denotes the Lie-
bracket. These are known as the “infinitesimal braid relations” or
“Yang-Baxter relations” and they have appeared independently in sev-
eral contexts in algebra and topology. In [7], T. Kohno interpreted them
as integrability conditions of certain connections in a complex vector
bundle. One can obtain the relations in a slightly different setting, by
considering the Lie algebra E0

∗(π) associated with the descending cen-
tral series of a group π. In [4] Falk and Randell were interested in the
case when π is the fundamental group of a fiber-type arrangement. In
particular, they computed the additive structure of E0

∗(Pk) where Pk
is the pure braid group on k strands. Apart from the grading, this is
known to be isomorphic (as a Lie algebra) to PH∗ΩF (R2n, k) for n ≥ 2,
where P stands for the primitives.

In this article, analogues FG(M,k) of configuration spaces are de-
fined. Loosely speaking, these are spaces of ordered k-tuples of points
in a space M which has a G-action and where the points lie in distinct
orbits. In the case of G = Z/p, M = C−{0} they also provide interesting
examples of fiber-type arrangements.

2 The spaces FG(M,k)

Let M be an n-dimensional manifold, G a finite group and let us assume
that G acts freely on M . Let Gm denote the orbit of an element m ∈M
under the action of G. Inspired by [5], define

FG(M,k) = { (m1, . . . ,mk) ∈Mk | Gmi 6= Gmj for i 6= j }

For any natural number i, fix a finite subset Qi ⊂ M with cardinality
|Qi| = i. Then the spaces FG(M,k) satisfy the following:

Theorem 2.1.1 For k ≥ l, the projection p : FG(M,k) → FG(M, l)
onto the first l coordinates, is a locally trivial bundle with fiber FG(M −
Q|G|l, k − l).

An equivalent definition can be given in terms of ordinary configura-
tion spaces. Let f :M/G→ BG be the map that classifies the covering
space G→M →M/G.

Theorem 2.1.2 The space FG(M,k) is homeomorphic to the total space
of the pull-back of the principal fibration Gk → (EG)k → (BG)k along

the composition F (M/G, k) ↪→ (M/G)k
fk- (BG)k.
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Therefore, one has a Gk-principal bundle FG(M,k) → F (M/G, k)
which can be described in the obvious way. Theorems 2.1 and 2.2 will be
proved in section 5. Some examples of manifolds with free group-actions
are:

1. Rn − {~0} with a Z/2-action given by the antipodal map.

2. Cn−{~0} with a a Z/p-action given by multiplication by a primitive
p-th root of unity ζp.

3. The actions in 1. and 2. restrict to free actions of Z/2 and Z/p on
the spheres Sn and S2n+1, respectively.

4. For any manifold M , the symmetric group on k letters Σk acts
freely on the configuration space F (M,k).

Using a very well known result about fibrations with cross-sections
(see section 3.2), one can prove:

Theorem 2.1.3 If the fibration (M −Q|G|(i−1))→ FG(M, i)→ FG(M,
i − 1) has a cross-section for 2 ≤ i ≤ k, then there is a homotopy
equivalence:

ΩFG(M,k) '
k−1∏
i=0

Ω(M −Q|G|i)

Remark This is always the case when M = M ′ − {∗} is a manifold
with a “puncture” or M = N×R. This product decomposition however
is not multiplicative, i.e, it is not a homotopy equivalence of H-spaces.
The precise algebraic extension in homology is given next for the space
Bk(Rn) which is defined below.

Set Bk(R
n) = FZ/2(Rn−{~0}, k), with the Z/2-action given in 1. The

notation comes from the fact that Bk(C) ⊂ Ck is the complement of
an arrangement of hyperplanes of type Bk (see [10]). The arrangement
in question is the union of the complexifications of the reflecting hyper-
planes in a Coxeter group of type Bk. In the next section we study the
homology of Bk(Rn) as well as the homology ring of its loop space. A
sample of the homological calculation is given by the following theorem.
For any non-zero integer j, define sgn(j) = j/|j|.
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Theorem 2.1.4 For an even integer n ≥ 4, the Lie algebra of prim-
itives in the Hopf algebra H∗(ΩBq(Rn)) is given as a graded module
by:

PH∗(ΩBq(Rn)) ∼= L[V1]⊕ L[V2]⊕ . . .⊕ L[Vq],

where L[Vi] is the free Lie algebra generated by the set Vi = {Bi,j | i >
|j| } (to be defined in section 3). The Lie products [a, b] with a ∈ Vi and
b ∈ Vk for 1 ≤ i < k ≤ q are given as follows:

If {i, |j|} ∩ {k, |l|} = ø , then [Bi,j , Bk,l] = 0. Otherwise,

(a) if j 6= 0 6= l, then

[Bi,j , Bk,l, ] =


[Bk,l, Bk,sgn(l)j ] for |l| = i

[Bk,l, Bk,sgn(l)sgn(j)i] for |l| = |j|;

(b) if j = 0, then

[Bi,0, Bk,l] = [Bk,l, (Bk,−i +Bk,0 +Bk,i)].

3 The homology ring H∗(ΩBq(Rn))

3.1 The homology of Bq(Rn)

In this section we compute H∗Bq(Rn) and construct an explicit basis for
Hn−1(Bq(Rn)). We already know that the fibration: (Rn − Q2q−1) →
Bq(Rn) → Bq−1(Rn) has a section; therefore H∗Bq−1(Rn) injects in
the homology of the total space and the corresponding Serre spectral
sequence collapses for dimensional reasons, so

H∗(Bq(Rn)) ∼= H∗(Bq−1(Rn))⊗H∗(Rn −Q2q−1)

∼= H∗(Bq−1(Rn))⊗H∗(
∨

2q−1

Sn−1)

∼=
q⊗
i=1

H∗(
∨

2i−1

Sn−1) (by induction),

and, in particular, Hn−1 has rank 1+3+ . . .+(2q−1) = q2. Let ~e1 ∈ Rn
be the first canonical unit vector. Now, for i = 0, . . . , q put xi = i · ~e1
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For 0 ≤ j < i < q let

Ci,j , C̄i,j : Sn−1 −→ Bq(Rn)

be given by:

Ci,j(z) = (x1, x2, . . . , xi−1, xj +
z

2
, xi+1, . . . , xq) if j ≥ 0

C̄i,j(z) = (x1, x2, . . . , xi−1,−xj +
z

2
, xi+1, . . . , xq) if j > 0.

Let ι be the fundamental class in H∗(S
n−1). Then the set of homol-

ogy classes

{Ci,j∗(ι) | 0 ≤ j < i < q } ∪ {C̄ i,j∗(ι) | 1 ≤ j < i < q }

is the desired basis.

We can prove the Ci,j ’s are linearly independent by constructing
their duals in cohomology. For 0 ≤ j < i < q let pi,j , p

+
i,j : Bq(Rn) −→

Sn−1 be the maps

pi,j(~x) =
xi − xj
|xi − xj |

if j ≥ 0,

p+
i,j(~x) =

xi + xj
|xi + xj |

if j > 0.

The induced maps

pi,j∗, p+
i,j∗ : Hn−1(Bq(Rn)) −→ Z

represent elements in Hn−1(Bq(Rn)) dual to Ci,j∗(ι) and C̄i,j∗(ι). This
can be seen by evaluating directly < p+

i,j∗, C >, where C runs through
the set constructed above. Finally, if we choose (x1, . . . , xk) to be the
base point of Bk(Rn), we can identify the set

{Ck,0∗(ι)} ∪ {Ck,j∗(ι) | 1 ≤ j < k } ∪ { C̄k,j∗(ι) | 1 ≤ j < k }

with a basis for Hn−1(Rn −Q2k−1) ∼= Hn−1(∨2k−1S
n−1).
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3.2 The Lie algebra of primitives in H∗(ΩBq(Rn))

We recall the following fact (see for example [1]). Let F → E → B be
a fibration with a cross-section σ :B → E. Then there is a homotopy
equivalence: ΩB × ΩF −→ ΩE. A choice of equivalence is

ΩB × ΩF
Ω(σ)×Ω(incl)- ΩE × ΩE mult- ΩE

Therefore

(1) The inclusions ΩB → ΩE and ΩF → ΩE are multiplicative and
thus, the induced maps in homology are morphims of algebras.

(2) H∗(ΩB) ⊗H∗(ΩF ) −→ H∗(ΩE) is an isomorphism if coefficients
are taken such that the strong form of the Künneth theorem holds
(where Tor = 0).

This implies Theorem 2.1.3 and gives the module structure of

H∗(ΩBq(Rn)).

Indeed, (2) can be applied to the tower of fibrations

Bq(Rn) ←− (Rn −Q2q−1)
↓

Bq−1(Rn) ←− (Rn −Q2q−3)
↓
...

...
↓

B2(Rn) ←− (Rn −Q3)
↓

B1(Rn) ←− (Rn − {0})

to set up an isomorphism

q⊗
i=1

H∗ Ω(
∨

2i−1

Sn−1) −→ H∗(ΩBq(Rn)).

By the Bott-Samelson Theorem (see [1]),

H∗Ω(
∨

2i−1

Sn−1) ∼= T [H̄∗(
∨

2i−1

Sn−2)]
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and then, as graded modules, there is an isomorphism

H∗(ΩBq(Rn)) ∼= T [V1]⊗ T [V2]⊗ . . .⊗ T [Vq]

where T [V ] denotes the tensor algebra generated by the set V and Vi is
a basis for Hn−2(∨2i−1S

n−2) ∼= Hn−1(∨2i−1S
n−1) (the isomorphism is

given by the homology suspension). Thus, to calculate the ring structure
ofH∗(ΩBq(Rn)) it suffices to compute the commutators [a, b] with a ∈ Vi
and b ∈ Vk for 1 ≤ i < k ≤ q. The following is a very well known result:

Lemma 3.2.1 Let X be 1-connected and assume that H∗(ΩX;Z) is
primitively generated (as a Hopf algebra) and torsion-free. Then

H∗(ΩX;Z) ∼= U(P (H∗(ΩX;Z)))

is the universal enveloping algebra of the Lie algebra of primitives.

Proof: By hypothesis, the natural homomorphism U(PH∗(ΩX;Z))→
H∗(ΩX;Z) is a surjection. Notice that after tensoring with Q it also
becomes an injection (see for example [9]). Since there is no torsion this
implies the original map was an injection.

Now, the module of primitives in H∗Ω(∨2i−1S
n−1;Z) is given by

L[Vi], the free Lie algebra generated by Vi. Finally, the module of
primitives in H∗X ⊗ H∗Y (for path connected X and Y ) is PH∗X ⊕
PH∗Y . Thus there is an isomorphism

PH∗(ΩBk(Rn)) ∼= L[V1]⊕ L[V2]⊕ . . .⊕ L[Vq]

as graded modules and, for every i, L[Vi] is a Lie subalgebra of

PH∗(ΩBq(Rn)).

The problem is now reduced to determining the Lie algebra structure
on PH∗(ΩBq(Rn)).

Consider now the maps induced in homology by the loops of the Ci,j ’s :

(ΩCi,j)∗, (ΩC̄i,j)∗ : H∗(ΩS
n−1) −→ H∗(ΩBq(Rn))

and use them to define

Bi,j = (ΩCi,j)∗(ιn−2)

B̄i,j = (ΩC̄i,j)∗(ιn−2).
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We take now Vi to be the set {Bk,0} ∪ {Bk,j | 1 ≤ j < k } ∪ { B̄k,j | 1 ≤
j < k }

Let α denote the integer (−1)n.

Theorem 3.2.2 The Lie algebra of primitives in the Hopf Algebra

H∗(ΩBq(Rn))

is given as a graded module by:

PH∗(ΩBq(Rn)) = L[V1]⊕ L[V2]⊕ . . .⊕ L[Vq]

The Lie products [a, b] with a ∈ Vi and b ∈ Vk for 1 ≤ i < k ≤ q are
given as follows:

If {i, j} ∩ {k, l} = ø, then

[Bi,j , Bk,l] = [Bi,j , B̄k,l] = [B̄i,j , Bk,l] = [B̄i,j , B̄k,l] = 0

Otherwise, if

(a) j = l then

{
[Bi,j , Bk,j ] = [Bk,j , Bk,i] (j 6= 0)
[Bi,0, Bk,0] = [Bk,0, Bk,i, ] + α[Bk,0, B̄k,i]

(b) i = l then

{
[Bi,j , Bk,i] = α[Bk,i, Bk,j ] (j 6= 0)
[Bi,0, Bk,i] = α[Bk,i, Bk,0] + [Bk,i, B̄k,i]

(c) j = l then [Bi,j , B̄k,j ] = α[B̄k,j , B̄k,i] (j 6= 0)

(d) i = l then

{
[Bi,j , B̄k,i] = [B̄k,i, B̄k,j ] (j 6= 0)
[Bi,0, B̄k,i] = [B̄k,i, Bk,0] + [B̄k,i, Bk,i]

(e) j = l then [B̄i,j , Bk,j ] = α[Bk,j , B̄k,i]

(f) i = l then [B̄i,j , Bk,i] = α[Bk,i, B̄k,j ] (j 6= 0)

(g) j = l then [B̄i,j , B̄k,j ] = [B̄k,j , Bk,i]

(h) i = l then [B̄i,j , B̄k,i] = [B̄k,i, Bk,j ] (j 6= 0).
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In the case of even n, most of the relations are redundant and the
statement simplifies considerably if we introduce a change of notation.
For |j| < i, let

Bi,j =

{
Bi,j if j ≥ 0
B̄i,|j| if j < 0.

Then we have:

Theorem 3.2.3 For even n ≥ 4, the Lie algebra of primitives in the
Hopf Algebra H∗(ΩBq(Rn)) is given as a graded module by:

PH∗(ΩBq(Rn)) = L[V1]⊕ L[V2]⊕ . . .⊕ L[Vq].

The Lie products [a, b] with a ∈ Vi and b ∈ Vk for 1 ≤ i < k ≤ q are
:

If {i, |j|} ∩ {k, |l|} = ø, then [Bi,j , Bk,l] = 0

Otherwise,

(a) if j 6= 0 6= l then

[Bi,j , Bk,l] =

{
[Bk,l, Bk,sgn(l)j ] if |l| = i

[Bk,l, Bk,sgn(l)sgn(j)i] if |l| = |j|.

(b) if j = 0 (and therefore l = −i, 0, i )

[Bi,0, Bk,l] = [Bk,l, (Bk,−i +Bk,0 +Bk,i)]

Summarizing, the Lie brackets among primitive elements are given
in terms of the “infinitesimal braid relations” with signs (a), and a
“new relation” (b) and they provide the set of commutation rules in
H∗(ΩBq(Rn)). We know that the presence of the signs is due to the Z/2
action considered, since analogous calculations have been carried out
for the Z/p case, with the generators of the form Bg

i,j , g ∈ Z/p (see [12]).
The new relations appeared naturally since the manifold M considered
here was not contractible.
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3.3 Lie relations

To compute the Lie brackets [Bi,j , Bk,l], with |j| < i, |l| < k for 1 ≤
i < k ≤ q we proceed as follows. By induction, it suffices to do the case
when k = q. We construct the specific map

ϕ : Sn−1 × Sn−1 −→ Bq(Rn)

given by ϕ(z, w) = (y1, y2, . . . , yq), where

ys =


xs if s 6= i, q
sgn(j) · xj + z/2 if s = i
sgn(l) · yi + w/4 if s = q

and compute the images of the fundamental cycles in H∗(S
n−1×Sn−1),

with the aid of the dual classes pi,j and p+
i,j

ϕ∗(ιn−1 ⊗ 1) =
∑

Cr,s∗(ι)

ϕ∗(1⊗ ιn−1) =
∑

Ct,u∗(ι).

We know that after looping, the cycles (ιn−2 ⊗ 1) and (1 ⊗ ιn−2) com-
mute (in the graded sense) in H∗(Ω(Sn−1 × Sn−1)) and it follows by
naturality that [

∑
Br,s,

∑
Bt,u] = 0. This method provides us with all

the relations. See [12] for the details.

4 Relation to descending central series.

There is a further relation to the Lie algebra associated to the descending
central series of the braid groups.

Recall that given a group G, its descending central series G = Γ1 ⊃
Γ2 ⊃ . . . is defined as: Γ1 = G, Γn = [Γn−1, G]. Notice that Γn+1 is
normal in Γn and so we can form the associated graded group of this
filtration {E0

n}n≥1 by setting E0
n(G) = Γn/Γn+1, which is an abelian

group for all n. Put E0
∗(G) =

⊕
nE

0
n(G). Now for every p and q the

commutators [a, b] = aba−1b−1 in G induce a bilinear map

E0
p × E0

q −→ E0
p+q

which makes E0
∗(G) into a Lie algebra. Moreover, E0

∗ is a functor from
the category of groups to the category of Lie algebras. Two elementary
properties of E0

∗ are:
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1. E0
1(G) = H1(G;Z) (with Z-trivial coefficients).

2. If F [X] is the free group generated by a set X, then E0
∗(F [X])

is isomorphic to L[X], the free Lie algebra generated by X (see
[11]).

In [4], Falk and Randell have proved:

Theorem 4.1.1 Let 1 → A
i→ B

j→ C → 1 be a split extension of
groups such that C acts trivially on H1(A). Then, the induced sequence

0→ E0
∗(A)→ E0

∗(B)→ E0
∗(C)→ 0

is split exact (as graded abelian groups, but not necessarily as Lie alge-
bras).

Sketch of the proof. Let σ :C → B be a cross-section, i.e. a right-
inverse of j. There is a well defined map τ :B → A given by τ(b) =
i−1[σj(b−1) · b] which need not be a homomorphism, but still is a left-
inverse of i. Now, the triviality of the action is equivalent to [A,C] ⊂
[A,A] = Γ2A, where we identify A and C with their images under i
and σ. One can prove inductively that [ΓnA,ΓkC] ⊂ Γn+kA and use
this to show that τ(ΓnB) ⊂ ΓnA. Now one can show that the induced
sequence

1→ ΓnA→ ΓnB → ΓnC → 1

is (split) exact, since b ∈ ΓnB∩ker j implies b = i(τ(b)). The theorem
follows easily from this last statement.

Thus, there is an isomorphism E0
∗(B) ∼= E0

∗(A) ⊕ E0
∗(C) of abelian

groups. In general, this is not a trivial extension of Lie algebras but
under the same hypothesis we can prove that if a ∈ E0

∗(A) and c ∈
E0
∗(C) then [a, c] ∈ E0

∗(A).

Recall that the configuration space F (R2, k) is a K(π, 1) and its
fundamental group can be identified with the pure braid group on k
strands, Pk. From [3] and [5] we know that there is a fibration:

(R2 −Qk−1) −→ F (R2, k) −→ F (R2, k − 1)

which has a cross-section and trivial local coefficients in homology. Thus
by looking at its exact sequence of homotopy groups, we obtain a split
extension of fundamental groups

1 −→ Fk−1 −→ Pk −→ Pk−1 −→ 1
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which satisfies the hypothesis of the theorem. Here Fk−1 is a free group
on (k − 1) generators, usually denoted Ak,1, Ak,2, . . . , Ak,k−1. Applying
inductively Theorem 4.1 we get

E0
∗(Pk)

∼= E0
∗(F1)⊕ E0

∗(F2)⊕ . . .⊕ E0
∗(Fk)

∼= L1 ⊕ L2 ⊕ . . .⊕ Lk

with Li = L[Ai,1, . . . , Ai,i−1]. We can work out the Lie algebra extension
by using a presentation of Pk and obtain the infinitesimal braid relations
among the Ai,j ’s.

5 Proof of theorems in section 2

Lemma 5.1.1 Let V = (Dn)◦ ⊂ Rn be the interior of the n-dimensional
unit disc. Then for every x0 ∈ V there is a homeomorphism φx0 : V̄ →
V̄ such that

(a) φ|∂V = id∂V (fixes the boundary).

(b) φx0(x0) = 0.

(c) The map ψ : V ×V̄ → V̄ defined by ψ(x, y) = φx(y), is continuous.

Proof: For v ∈ Rn, let Tv : Rn → Rn be the translation by −v,
Tv(x) = x − v. Let g : V → Rn be the homeomorphism: g(x) = x

1−|x| .
Now, the composition

V V

Rn Rn
?

g

p p p p p p p p-φ̃

-
Tg(xo)

6
g−1

gives a homeomorphism of V and can be extended continuously to φ :
V̄ → V̄ by defining φ(x) = x, ∀x ∈ ∂V . Thus φ is the desired map.

It is now easy to express the restriction ψ|V×V as the composite of
continuous maps, and we can extend it to V × V̄ by ψ(x, y) = y ∀x ∈
∂V .
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Proof (of Theorem 2.1.1). We adapt the proof in [5] to prove
the case l = k − 1. The general case is similar. Fix a base point
(ξ1, . . . , ξk−1) ∈ FG(M,k − 1). Consider Euclidean neighborhoods ξi ∈
Vi ⊂M such that

(1) Vi ∩ Vj = ø i 6= j

(2) Vi ∩ gVj = ø ∀i, j and g 6= e

where gVj = { gx | x ∈ Vj }. Notice now that V = V1 × . . . × Vk−1

is a neighborhood about (ξ1, . . . , ξk−1) . Using the previous lemma,
construct maps θi : Vi × V̄i → V̄i satisfying:

(i) θi(x,−) : V̄i → V̄i is a homeomorphism fixing ∂Vi

(ii) θi(x, x) = ξi

(in some sense, θi|x : V̄i → V̄i are homeomorphisms parametrized by x),
and use them to define the map θ : V ×M →M ,

θ(x1, . . . , xl, y) =

{
y if y /∈

⋃
i

⋃
g gVi

gθi(xi, g
−1y) if y ∈ gVi

By construction, θ has the following property: y /∈ { gxi | i = 1, . . . ,
k − 1; g ∈ G } if and only if θ(~x, y) /∈ { gξi | i = 1, . . . , k − 1; g ∈ G }.
Now, the local trivialization

p−1(V ) V × (M −Q|G|l)

V V
?

p

-
φ

≈

?

pr1

-=

is given by: φ(~x, y) = (~x, θ(~x, y)) with inverse φ−1(~x, z) = (~x, θ−1(~x, z)).

Proof (of Theorem 2.1.2). Notice that the group Gk = G× . . .×G
acts coordinate-wise on the product Mk. This induces a free action of
Gk on FG(M,k) and its orbit space FG(M,k)/Gk can be identified with
F (M/G, k). Now, it follows from the definition of f that the covering
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space Gk → Mk → (M/G)k is classified by the map fk : (M/G)k →
(BG)k and thus we have

FG(M,k) = i∗(Mk) = i∗(fk)∗(EG)k

where i : F (M/G, k) ↪→ (M/G)k is the natural inclusion.
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